diff --git a/QPod/docs/intro-cn.md b/QPod/docs/intro-cn.md index 2fb0ad3..df2292a 100644 --- a/QPod/docs/intro-cn.md +++ b/QPod/docs/intro-cn.md @@ -4,11 +4,11 @@ sidebar_position: 02 # QPod使用指引 -AI/数据科学的瑞士军刀——QPod提供了一站式、开箱即用、可自由定制的,基于容器的、开源AI/数据科学开发、分析工具。 - ## AI/数据科学的瑞士军刀 -QPod将常见的、最新的开放数据科学环境和工具封装成为了docker镜像,你无需进行繁琐的环境配置即可快速开始AI/数据科学的工程,同时能够方便地复现与分享您的研究工作。您可以在QPod中使用Jupyter Notebook/JupyterLab中运行Python, R, OpenJDK, NodeJS, Go, Julia, Octave等语言,QPod也包含了VS Code, R-Studio等工具。使用QPod,您可以: +AI/数据科学的瑞士军刀——QPod提供了一站式、开箱即用、可自由定制的,基于容器的、开源AI/数据科学开发、分析工具。 + +QPod将常见的、最新的开放数据科学环境和工具封装成为了容器镜像,你无需进行繁琐的环境配置即可快速开始AI/数据科学的工程,同时能够方便地复现与分享您的研究工作。您可以在QPod中使用Jupyter Notebook/JupyterLab中运行Python, R, OpenJDK, NodeJS, Go, Julia, Rust等语言,QPod也封装了VS Code, R-Studio等工具。使用QPod,您可以: - 📦 避免繁琐的环境配置、安装过程,QPod已经把常用的、最新的环境和工具封装在容器镜像中,您可以开箱即用; - 🌍 让您的工作更容易被自己/他人`复现`——QPod让科学研究和数据分析项目成为[可复现的工作流(reproducible pipelines)](https://doi.org/10.1038/d41586-018-07196-1),这能让你更好地和同行[分享你的工作](https://doi.org/10.1038/515151a). @@ -18,7 +18,7 @@ QPod将常见的、最新的开放数据科学环境和工具封装成为了dock ## QPod包含了什么 -QPod封装、整理、维护了一些列的容器镜像,这些镜像包含了常见的开放AI/数据科学语言环境和安装包:Ptyhon, R, OpenJDK, NodeJS, Go, Julia, Octave等,同时封装了Jupyter Notebook / JupyterLab / VS Code / RStudio等IDE让用户便捷地进行开发、交互计算。QPod适用于下面的应用场景: +QPod封装、整理、维护了一些列的容器镜像,这些镜像包含了常见的开放AI/数据科学语言环境和安装包:Ptyhon, R, OpenJDK, NodeJS, Go, Julia, Rust等,同时封装了Jupyter Notebook / JupyterLab / VS Code / RStudio等IDE让用户便捷地进行开发、交互计算。QPod适用于下面的应用场景: - 单机使用:在笔记本/台式机/工作站上使用,作为AI/数据科学开发环境; - 多租户使用:在服务器/集群上供多用户使用,以共享服务器计算资源(如GPU); @@ -26,17 +26,31 @@ QPod封装、整理、维护了一些列的容器镜像,这些镜像包含了 ## 安装使用 `1-2-3-GO`🎉 -### 0.安装Docker +### 0. 在服务器/笔记本上安装Docker + +- Linux (如: 最新版Ubuntu LTS): 直接安装 [docker-ce](https://hub.docker.com/search/?offering=community&type=edition&operating_system=linux) ( 社区版、免费 ) directly (也可以使用其他容器平台,例如podman); + +- macOS: 直接安装 [docker-ce-desktop](https://hub.docker.com/editions/community/docker-ce-desktop-mac); -Linux (e.g.: Ubuntu LTS) / Windows (>=10) / macOS. +- Windows (>=10): -- CPU用户:请安装 docker-ce ( [Linux](https://hub.docker.com/search/?offering=community&type=edition&operating_system=linux) | [macOS](https://download.docker.com/mac/stable/Docker.dmg) | [Windows](https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe) ) 或 [docker-ee](https://hub.docker.com/search/?offering=enterprise&type=edition) -- GPU用户:需使用Linux,在安装Docker之后还需安装[NVIDIA driver](https://github.com/NVIDIA/nvidia-docker/wiki/Frequently-Asked-Questions#how-do-i-install-the-nvidia-driver)与最新版的[nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-docker#quickstart) + - 选项1 (推荐): 先启用WSL2并安装最新的Ubuntu发行, 再参照在Linux上安装[docker-ce](https://hub.docker.com/search/?offering=community&type=edition&operating_system=linux)的步骤即可; + - Option 2: 直接安装[docker-ce desktop](https://desktop.docker.com/win/stable/amd64/Docker%20Desktop%20Installer.exe)。 + +#### GPU和cuda使用的特别提示 + +**请安装docker-ce,直接使用yum/apt官方源安装的docker有可能不能搭配cuda使用。** + +在安装Docker之后还需安装下面两个组件: + +- [NVIDIA driver](https://github.com/NVIDIA/nvidia-docker/wiki/Frequently-Asked-Questions#how-do-i-install-the-nvidia-driver) +- 与最新版的[nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-docker#quickstart) ### 1.选择你需要的功能包和你的工作目录 -- 从项目主页底部的表格(QPod镜像功能列表)中,选择你需要的功能包,如果你的磁盘空间和网速满足要求则推荐CPU用户选择`full`,GPU用户选择`full-cuda` -- 选择你的工作目录,请使用绝对路径(如`/root`,`/User/me`,`D:/work`) +- 选择你的工作目录`WORKDIR`,请使用绝对路径(如`/root`,`/User/me`,`D:/work`); + +- 从 [QPod镜像功能列表](tutorial-basics/qpod-stacks.md) 中,选择你需要的功能包,如果你的磁盘空间和网速满足要求则推荐CPU用户选择`full`,GPU用户选择`full-cuda`。 ### 2.准备下载和启动容器服务 diff --git a/QPod/docs/intro-en.md b/QPod/docs/intro-en.md index edd4873..3ebd2ee 100644 --- a/QPod/docs/intro-en.md +++ b/QPod/docs/intro-en.md @@ -6,11 +6,11 @@ sidebar_position: 01 ## Your Swiss Army Knife for AI & Data Science -In a nutshell, `QPod` ( [DockerHub](https://hub.docker.com/r/qpod/qpod/) | [GitHub](https://github.com/QPod/docker-images) ) is an **out-of-box Data Science / AI environment and platform** at your fingertip which you would love 💕. +In a nutshell, `QPod` ( [DockerHub](https://hub.docker.com/u/qpod/) | [GitHub](https://github.com/QPod/) ) is an **out-of-box Data Science / AI environment and platform** at your fingertip which you would love 💕. With Docker and `QPod`, you -- 📦 can start your data science / AI projects with nearly `zero configuration` - QPod puts everything about installing (latest) packages and configuring environment into standard docker images and set you free from these tedious work. +- 📦 can start your data science / AI projects with nearly `zero configuration` - QPod puts everything about installing (latest) packages and configuring environment into standard docker images and sets you free from these tedious work. - 🌍 will find your work more `easy-to-reproduce` - QPod standard images make scientific research or data analysis project as [reproducible pipelines](https://doi.org/10.1038/d41586-018-07196-1) and help you [share your work with others](https://doi.org/10.1038/515151a). - 🆙 can easily `scale-up and scale-out` your algorithms and key innovations - QPod help you move forward smoothly from the development stage to deployment stage by re-using these images to either to provide RESTful APIs or orchestrate map/reduce operations on big data. @@ -30,10 +30,26 @@ With Docker and `QPod`, you ## How to use? `1-2-3-GO`🎉 -### 0. Have docker installed on your laptop/server - Linux (e.g.: Ubuntu LTS) / Windows (>=10) / macOS +### 0. Have docker installed on your laptop/server -- Install **Docker >= 19.03**: `docker-ce` ( community version & free: [Linux](https://hub.docker.com/search/?offering=community&type=edition&operating_system=linux) | [macOS](https://hub.docker.com/editions/community/docker-ce-desktop-mac) | [Windows](https://desktop.docker.com/win/stable/amd64/Docker%20Desktop%20Installer.exe) ) on your laptop/server. **Docker installed from default Ubuntu/CentOS repository probably won't work for GPU!** -- If you want to use *NVIDIA GPUs* with `QPod`, Linux server or latest Windows WSL2 is **required**. After installing **Docker >= 19.03**, also install both the [`NVIDIA driver`](https://github.com/NVIDIA/nvidia-docker/wiki/Frequently-Asked-Questions#how-do-i-install-the-nvidia-driver) and the latest version of [`nvidia-container-toolkit`](https://github.com/NVIDIA/nvidia-docker#quickstart) to use the GPUs in containers. +- Linux (e.g.: Ubuntu LTS): install [docker-ce](https://hub.docker.com/search/?offering=community&type=edition&operating_system=linux) ( community version & free: ) directly (or install other container services like podman). + +- macOS: install [docker-ce-desktop](https://hub.docker.com/editions/community/docker-ce-desktop-mac) + +- Windows (>=10): + + - Option 1 (recommended): install WSL2 and latest Ubuntu distro, and then install [docker-ce](https://hub.docker.com/search/?offering=community&type=edition&operating_system=linux) just like on Linux. + - Option 2: [docker-ce desktop](https://desktop.docker.com/win/stable/amd64/Docker%20Desktop%20Installer.exe) + +### Special reminder for GPU and cuda users + +**Docker installed from default Ubuntu/CentOS repository probably won't work for GPU!** + +If you want to use *NVIDIA GPUs* with `QPod`, Linux server or latest Windows WSL2 is **required**. + +After installing **Docker >= 19.03**, also install both +- the [`NVIDIA driver`](https://github.com/NVIDIA/nvidia-docker/wiki/Frequently-Asked-Questions#how-do-i-install-the-nvidia-driver) +- and the latest version of [`nvidia-container-toolkit`](https://github.com/NVIDIA/nvidia-docker#quickstart) to use the GPUs in containers. ### 1. Choose the features and choose a folder on your disk diff --git a/QPod/docusaurus.config.ts b/QPod/docusaurus.config.ts index 8a6c523..b132862 100644 --- a/QPod/docusaurus.config.ts +++ b/QPod/docusaurus.config.ts @@ -38,14 +38,14 @@ const config: Config = { // Please change this to your repo. // Remove this to remove the "edit this page" links. editUrl: - 'https://github.com/QPod/QPod.github.io/tree/main/QPod/docs/', + 'https://github.com/QPod/QPod.github.io/tree/main/QPod/', }, blog: { showReadingTime: true, // Please change this to your repo. // Remove this to remove the "edit this page" links. editUrl: - 'https://github.com/QPod/QPod.github.io/tree/main/QPod/blog/', + 'https://github.com/QPod/QPod.github.io/tree/main/QPod/', }, theme: { customCss: './src/css/custom.css',