-
Notifications
You must be signed in to change notification settings - Fork 0
/
ContinusouSubarraySum.java
38 lines (35 loc) · 1.57 KB
/
ContinusouSubarraySum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
public class ContinusouSubarraySum {
/**
Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.
Example 1:
Input: [23, 2, 4, 6, 7], k=6
Output: True
Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.
Example 2:
Input: [23, 2, 6, 4, 7], k=6
Output: True
Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.
Note:
The length of the array won't exceed 10,000.
You may assume the sum of all the numbers is in the range of a signed 32-bit integer.
*/
//nums : 1 2
//sums : 0 1 1
// k = 0
public boolean checkSubarraySum(int[] nums, int k) {
if (nums == null || nums.length == 0) return false;
int[] sums = new int[nums.length + 1]; // Notice : we need a space for empty array, so that we can get the sum of [0 ~ n]
int prev = 0;
//Put sums into set
for (int i = 0; i < nums.length; i++) {
sums[i + 1] += prev + nums[i];
prev = sums[i + 1];
}
for (int i = 1; i < sums.length; i++) {
for (int j = 0; j < i - 1; j++) { // Notice : the shortest array len should be at least 2.
if (k == 0 && sums[i] - sums[j] == 0 || k != 0 && (sums[i] - sums[j]) % k == 0) return true;
}
}
return false;
}
}