# config yaml配置项说明
KeyPoint 使用时config文件配置项说明,以tinypose_256x192.yml为例
use_gpu: true #是否使用gpu训练
log_iter: 5 #打印log的iter间隔
save_dir: output #模型保存目录
snapshot_epoch: 10 #保存模型epoch间隔
weights: output/tinypose_256x192/model_final #测试加载模型路径(不含后缀“.pdparams”)
epoch: 420 #总训练epoch数量
num_joints: &num_joints 17 #关键点数量
pixel_std: &pixel_std 200 #变换时相对比率像素(无需关注,不动就行)
metric: KeyPointTopDownCOCOEval #metric评估函数
num_classes: 1 #种类数(检测模型用,不需关注)
train_height: &train_height 256 #模型输入尺度高度变量设置
train_width: &train_width 192 #模型输入尺度宽度变量设置
trainsize: &trainsize [*train_width, *train_height] #模型输入尺寸,使用已定义变量
hmsize: &hmsize [48, 64] #输出热力图尺寸(宽,高)
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] #左右关键点经图像翻转时对应关系,例如:图像翻转后,左手腕变成了右手腕,右手腕变成了左手腕
\#####model
architecture: TopDownHRNet #模型框架结构类选择
TopDownHRNet: #TopDownHRNet相关配置
backbone: LiteHRNet #模型主干网络
post_process: HRNetPostProcess #模型后处理类
flip_perm: *flip_perm #同上flip_perm
num_joints: *num_joints #关键点数量(输出通道数量)
width: &width 40 #backbone输出通道数
loss: KeyPointMSELoss #loss函数选择
use_dark: true #是否使用DarkPose后处理
LiteHRNet: #LiteHRNet相关配置
network_type: wider_naive #网络结构类型选择
freeze_at: -1 #梯度截断branch id,截断则该branch梯度不会反传
freeze_norm: false #是否固定normalize层参数
return_idx: [0] #返回feature的branch id
KeyPointMSELoss: #Loss相关配置
use_target_weight: true #是否使用关键点权重
loss_scale: 1.0 #loss比率调整,1.0表示不变
\#####optimizer
LearningRate: #学习率相关配置
base_lr: 0.002 #初始基础学习率
schedulers:
\- !PiecewiseDecay #衰减策略
milestones: [380, 410] #衰减时间对应epoch次数
gamma: 0.1 #衰减率
\- !LinearWarmup #Warmup策略
start_factor: 0.001 #warmup初始学习率比率
steps: 500 #warmup所用iter次数
OptimizerBuilder: #学习策略设置
optimizer:
type: Adam #学习策略Adam
regularizer:
factor: 0.0 #正则项权重
type: L2 #正则类型L2/L1
\#####data
TrainDataset: #训练数据集设置
!KeypointTopDownCocoDataset #数据加载类
image_dir: "" #图片文件夹,对应dataset_dir/image_dir
anno_path: aic_coco_train_cocoformat.json #训练数据Json文件,coco格式
dataset_dir: dataset #训练数据集所在路径,image_dir、anno_path路径基于此目录
num_joints: *num_joints #关键点数量,使用已定义变量
trainsize: *trainsize #训练使用尺寸,使用已定义变量
pixel_std: *pixel_std #同上pixel_std
use_gt_bbox: True #是否使用gt框
EvalDataset: #评估数据集设置
!KeypointTopDownCocoDataset #数据加载类
image_dir: val2017 #图片文件夹
anno_path: annotations/person_keypoints_val2017.json #评估数据Json文件,coco格式
dataset_dir: dataset/coco #数据集路径,image_dir、anno_path路径基于此目录
num_joints: *num_joints #关键点数量,使用已定义变量
trainsize: *trainsize #训练使用尺寸,使用已定义变量
pixel_std: *pixel_std #同上pixel_std
use_gt_bbox: True #是否使用gt框,一般测试时用
image_thre: 0.5 #检测框阈值设置,测试时使用非gt_bbox时用
TestDataset: #纯测试数据集设置,无label
!ImageFolder #数据加载类,图片文件夹类型
anno_path: dataset/coco/keypoint_imagelist.txt #测试图片列表文件
worker_num: 2 #数据加载worker数量,一般2-4,太多可能堵塞
global_mean: &global_mean [0.485, 0.456, 0.406] #全局均值变量设置
global_std: &global_std [0.229, 0.224, 0.225] #全局方差变量设置
TrainReader: #训练数据加载类设置
sample_transforms: #数据预处理变换设置
\- RandomFlipHalfBodyTransform: #随机翻转&随机半身变换类
scale: 0.25 #最大缩放尺度比例
rot: 30 #最大旋转角度
num_joints_half_body: 8 #关键点小于此数不做半身变换
prob_half_body: 0.3 #半身变换执行概率(满足关键点数量前提下)
pixel_std: *pixel_std #同上pixel_std
trainsize: *trainsize #训练尺度,同上trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] #上半身关键点id
flip_pairs: *flip_perm #左右关键点对应关系,同上flip_perm
\- AugmentationbyInformantionDropping:
prob_cutout: 0.5 #随机擦除变换概率
offset_factor: 0.05 #擦除位置中心点随机波动范围相对图片宽度比例
num_patch: 1 #擦除位置数量
trainsize: *trainsize #同上trainsize
\- TopDownAffine:
trainsize: *trainsize #同上trainsize
use_udp: true #是否使用udp_unbias(flip测试使用)
\- ToHeatmapsTopDown_DARK: #生成热力图gt类
hmsize: *hmsize #热力图尺寸
sigma: 2 #生成高斯核sigma值设置
batch_transforms:
\- NormalizeImage: #图像归一化类
mean: *global_mean #均值设置,使用已有变量
std: *global_std #方差设置,使用已有变量
is_scale: true #图像元素是否除255.,即[0,255]到[0,1]
\- Permute: {} #通道变换HWC->CHW,一般都需要
batch_size: 128 #训练时batchsize
shuffle: true #数据集是否shuffle
drop_last: false #数据集对batchsize取余数量是否丢弃
EvalReader:
sample_transforms: #数据预处理变换设置,意义同TrainReader
\- TopDownAffine: #Affine变换设置
trainsize: *trainsize #训练尺寸同上trainsize,使用已有变量
use_udp: true #是否使用udp_unbias,与训练需对应
batch_transforms:
\- NormalizeImage: #图片归一化,与训练需对应
mean: *global_mean
std: *global_std
is_scale: true
\- Permute: {} #通道变换HWC->CHW
batch_size: 16 #测试时batchsize
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width] #输入数据维度设置,CHW
sample_transforms:
\- Decode: {} #图片加载
\- TopDownEvalAffine: #Affine类,Eval时用
trainsize: *trainsize #输入图片尺度
\- NormalizeImage: #输入图像归一化
mean: *global_mean #均值
std: *global_std #方差
is_scale: true #图像元素是否除255.,即[0,255]到[0,1]
\- Permute: {} #通道变换HWC->CHW
batch_size: 1 #Test batchsize
fuse_normalize: false #导出模型时是否内融合归一化操作(若是,预处理中可省略normalize,可以加快pipeline速度)