Skip to content
forked from TheDan64/inkwell

It's a New Kind of Wrapper for Exposing LLVM (Safely)

License

Notifications You must be signed in to change notification settings

OranGot/inkwell

 
 

Repository files navigation

Inkwell(s)

Crates.io Build Status codecov lines of code Join the chat at https://gitter.im/inkwell-rs/Lobby Minimum rustc 1.56

It's a New Kind of Wrapper for Exposing LLVM (Safely)

Inkwell aims to help you pen your own programming languages by safely wrapping llvm-sys. It provides a more strongly typed interface than the underlying LLVM C API so that certain types of errors can be caught at compile time instead of at LLVM's runtime. This means we are trying to replicate LLVM IR's strong typing as closely as possible. The ultimate goal is to make LLVM safer from the rust end and a bit easier to learn (via documentation) and use.

Requirements

  • Rust 1.56+ (Stable, Beta, or Nightly)
  • One of LLVM 4-18

Usage

You'll need to point your Cargo.toml to use a single LLVM version feature flag corresponding to your LLVM version as such:

[dependencies]
inkwell = { version = "0.5.0", features = ["llvm18-0"] }

Supported versions: LLVM 4-18 mapping to a cargo feature flag llvmM-0 where M corresponds to the LLVM major version.

Please be aware that we may make breaking changes on master from time to time since we are pre-v1.0.0, in compliance with semver. Please prefer a crates.io release whenever possible!

Documentation

Documentation is automatically deployed here based on master. These docs are not yet 100% complete and only show the latest supported LLVM version due to a rustdoc issue. See #2 for more info.

Examples

Tari's llvm-sys example written in safe code1 with Inkwell:

use inkwell::builder::Builder;
use inkwell::context::Context;
use inkwell::execution_engine::{ExecutionEngine, JitFunction};
use inkwell::module::Module;
use inkwell::OptimizationLevel;

use std::error::Error;

/// Convenience type alias for the `sum` function.
///
/// Calling this is innately `unsafe` because there's no guarantee it doesn't
/// do `unsafe` operations internally.
type SumFunc = unsafe extern "C" fn(u64, u64, u64) -> u64;

struct CodeGen<'ctx> {
    context: &'ctx Context,
    module: Module<'ctx>,
    builder: Builder<'ctx>,
    execution_engine: ExecutionEngine<'ctx>,
}

impl<'ctx> CodeGen<'ctx> {
    fn jit_compile_sum(&self) -> Option<JitFunction<SumFunc>> {
        let i64_type = self.context.i64_type();
        let fn_type = i64_type.fn_type(&[i64_type.into(), i64_type.into(), i64_type.into()], false);
        let function = self.module.add_function("sum", fn_type, None);
        let basic_block = self.context.append_basic_block(function, "entry");

        self.builder.position_at_end(basic_block);

        let x = function.get_nth_param(0)?.into_int_value();
        let y = function.get_nth_param(1)?.into_int_value();
        let z = function.get_nth_param(2)?.into_int_value();

        let sum = self.builder.build_int_add(x, y, "sum").unwrap();
        let sum = self.builder.build_int_add(sum, z, "sum").unwrap();

        self.builder.build_return(Some(&sum)).unwrap();

        unsafe { self.execution_engine.get_function("sum").ok() }
    }
}

fn main() -> Result<(), Box<dyn Error>> {
    let context = Context::create();
    let module = context.create_module("sum");
    let execution_engine = module.create_jit_execution_engine(OptimizationLevel::None)?;
    let codegen = CodeGen {
        context: &context,
        module,
        builder: context.create_builder(),
        execution_engine,
    };

    let sum = codegen.jit_compile_sum().ok_or("Unable to JIT compile `sum`")?;

    let x = 1u64;
    let y = 2u64;
    let z = 3u64;

    unsafe {
        println!("{} + {} + {} = {}", x, y, z, sum.call(x, y, z));
        assert_eq!(sum.call(x, y, z), x + y + z);
    }

    Ok(())
}

1 There are two uses of unsafe in this example because the actual act of compiling and executing code on the fly is innately unsafe. For one, there is no way of verifying we are calling get_function() with the right function signature. It is also unsafe to call the function we get because there's no guarantee the code itself doesn't do unsafe things internally (the same reason you need unsafe when calling into C).

Can be found in the examples directory.

Alternative Crate(s)

Contributing

Check out our Contributing Guide

About

It's a New Kind of Wrapper for Exposing LLVM (Safely)

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 100.0%