You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
inference gradio web reponse random words for deepseek instrcuct model
while using rest api, everything seems to be OK:
curl -H "Content-Type: application/json" -X POST -d '{"prompt": "写一个快排吧"}' "http://127.0.0.1:8000/api/v1/default/opencsg--opencsg-deepseek-coder-1.3b-v0.1/run/predict" {"generated_text":"}\n\n\n# 快排\ndef quicksort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quicksort(left) + middle + quicksort(right)\n\n# 测试\nprint(quicksort(arr))\n\n# 输出: [1, 2, 3, 4, 5, 6, 7, 8, 9]\n```\n\n这个程序使用了快速排序算法,它是一种高效的排序算法,基于分治法的原理。它选择一个元素作为枢轴,并根据它们与枢轴的大小将其他元素分成两个子数组,然后递归地对子数组进行排序。\n\n快速排序的平均时间复杂度为O(n log n),最坏情况下的时间复杂度为O(n^2),但这种情况很少发生。","num_input_tokens":16,"num_input_tokens_batch":16,"num_generated_tokens":267,"num_generated_tokens_batch":267,"preprocessing_time":0.008793507993686944,"generation_time":2.4766286090016365,"postprocessing_time":0.0009328589949291199,"generation_time_per_token":0.008751337840995181,"generation_time_per_token_batch":0.008751337840995181,"num_total_tokens":283,"num_total_tokens_batch":283,"total_time":2.4863549759902526,"total_time_per_token":0.008785706628940822,"total_time_per_token_batch":0.008785706628940822}(.llm-inference) root@opencsg-gpu1-4090:~/pl/workspace/depenglee/llm-inference#
The text was updated successfully, but these errors were encountered:
inference gradio web reponse random words for deepseek instrcuct model
while using rest api, everything seems to be OK:
curl -H "Content-Type: application/json" -X POST -d '{"prompt": "写一个快排吧"}' "http://127.0.0.1:8000/api/v1/default/opencsg--opencsg-deepseek-coder-1.3b-v0.1/run/predict" {"generated_text":"}\n\n\n# 快排\ndef quicksort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quicksort(left) + middle + quicksort(right)\n\n# 测试\nprint(quicksort(arr))\n\n# 输出: [1, 2, 3, 4, 5, 6, 7, 8, 9]\n```\n\n这个程序使用了快速排序算法,它是一种高效的排序算法,基于分治法的原理。它选择一个元素作为枢轴,并根据它们与枢轴的大小将其他元素分成两个子数组,然后递归地对子数组进行排序。\n\n快速排序的平均时间复杂度为O(n log n),最坏情况下的时间复杂度为O(n^2),但这种情况很少发生。","num_input_tokens":16,"num_input_tokens_batch":16,"num_generated_tokens":267,"num_generated_tokens_batch":267,"preprocessing_time":0.008793507993686944,"generation_time":2.4766286090016365,"postprocessing_time":0.0009328589949291199,"generation_time_per_token":0.008751337840995181,"generation_time_per_token_batch":0.008751337840995181,"num_total_tokens":283,"num_total_tokens_batch":283,"total_time":2.4863549759902526,"total_time_per_token":0.008785706628940822,"total_time_per_token_batch":0.008785706628940822}(.llm-inference) root@opencsg-gpu1-4090:~/pl/workspace/depenglee/llm-inference#
The text was updated successfully, but these errors were encountered: