-
Notifications
You must be signed in to change notification settings - Fork 0
/
compiler.c
933 lines (783 loc) · 30.2 KB
/
compiler.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "chunk.h"
#include "compiler.h"
#include "object.h"
#include "common.h"
#include "scanner.h"
#include "value.h"
#ifdef DEBUG_PRINT_CODE
#include "debug.h"
#endif
typedef struct {
Token current;
Token previous;
bool hadError;
bool panicMode;
} Parser;
/* Precedence levels as an Enum */
typedef enum {
PREC_NONE,
PREC_ASSIGNMENT, // =
PREC_OR, // or
PREC_AND, // and
PREC_EQUALITY, // == !=
PREC_COMPARISON, // < > <= >=
PREC_TERM, // + -
PREC_FACTOR, // * /
PREC_UNARY, // ! -
PREC_CALL, // . ()
PREC_PRIMARY
} Precedence;
typedef void (*ParseFn)(bool canAssign); /* This is a typedef for a function that takes no parameters and returns nothing */
/* This struct represents a single row in the parser table */
typedef struct {
ParseFn prefix;
ParseFn infix;
Precedence precedence;
} ParseRule;
typedef struct {
Token name;
int depth; /* records the scope depth of the block where the local variable was declared */
bool isCaptured;
} Local;
typedef struct {
uint8_t index;
bool isLocal;
} Upvalue;
/* This lets the compiler tell when it’s compiling top-level code versus the body of a function */
typedef enum {
TYPE_FUNCTION,
TYPE_SCRIPT
} FunctionType;
typedef struct Compiler {
struct Compiler* enclosing; /* Each compiler points back to the compiler fo the function that encloses it all the way back to the root Compiler for top-level code */
ObjFunction* function;
FunctionType type;
Local locals[UINT8_COUNT]; /* Simple array of all locals that are in scope during each point in the compilation */
int localCount; /* Tracks how many locals are in scope*/
Upvalue upvalues[UINT8_COUNT];
int scopeDepth; /* The number of bits surrounding the current but we are compiling */
} Compiler;
Parser parser;
Compiler* current = NULL;
Chunk* compilingChunk;
static Chunk* currentChunk() {
/*
Every place in the compiler that was writing to the Chunk now needs to go through that function pointer
The current chunk is always the chunk owned by the function we're in the middle of compiling
*/
return ¤t->function->chunk;
}
static void errorAt(Token* token, const char* message) {
if (parser.panicMode) return;
parser.panicMode = true;
fprintf(stderr, "[line %d] Error", token->line);
if (token->type == TOKEN_EOF) fprintf(stderr, " at end");
else if (token->type == TOKEN_ERROR) { /* Nothing */ }
else fprintf(stderr, " at '%.*s'", token->length, token->start);
fprintf(stderr, ": %s\n", message);
parser.hadError = true;
}
static void error(const char* message) {
errorAt(&parser.previous, message);
}
static void errorAtCurrent(const char* message) {
errorAt(&parser.current, message);
}
static void advance() {
parser.previous = parser.current;
for (;;) {
parser.current = scanToken();
if (parser.current.type != TOKEN_ERROR) break;
errorAtCurrent(parser.current.start);
}
}
/*
It’s similar to 'advance' in that it reads the next token.
But it also validates that the token has an expected type.
*/
static void consume(TokenType type, const char* message) {
if (parser.current.type == type) {
advance();
return;
}
errorAtCurrent(message);
}
static bool check(TokenType type) {
return parser.current.type == type;
}
static bool match(TokenType type) {
if (!check(type)) return false;
advance();
return true;
}
static void emitByte(uint8_t byte) {
writeChunk(currentChunk(), byte, parser.previous.line);
}
static void emitBytes(uint8_t byte1, uint8_t byte2) {
emitByte(byte1);
emitByte(byte2);
}
/*
It’s a bit like `emitJump` and `patchJump` combined. It emits a new loop instruction, which unconditionally jumps backwards by a given offset.
*/
static void emitLoop(int loopStart) {
emitByte(OP_LOOP);
int offset = currentChunk()->count - loopStart + 2;
if (offset > UINT16_MAX) error("Loop body too large.");
emitByte((offset >> 8) & 0xFF);
emitByte(offset & 0xFF);
}
/*
The `emitJump` function reserves space for the jump offset and returns
the index of the first byte of the emitted jump instruction.
*/
static int emitJump(uint8_t instruction) {
emitByte(instruction);
emitByte(0xFF);
emitByte(0xFF);
return currentChunk()->count - 2; /* Subracting 2 to give us the index of the first byte of the jump instruction */
}
static void emitReturn() {
emitByte(OP_NIL); /* In case we were returning a function that returns nothing */
emitByte(OP_RETURN);
}
static uint8_t makeConstant(Value value) {
int constant = addConstant(currentChunk(), value);
if (constant > UINT8_MAX) {
error("Too many constants in one chunk.");
return 0;
}
return (uint8_t)constant;
}
static void emitConstant(Value value) {
emitBytes(OP_CONSTANT, makeConstant(value));
}
static void patchJump(int offset) {
int jump = currentChunk()->count - offset - 2;
if (jump > UINT16_MAX) {
error("Too much code to jump over.");
}
currentChunk()->code[offset] = (jump >> 8) & 0xFF;
currentChunk()->code[offset + 1] = jump & 0xFF;
}
static void initCompiler(Compiler* compiler, FunctionType type) {
/* Initialize the new Compiler fields */
compiler->enclosing = current; /* When initializing a new Compiler, we capture the about-to-no-longer-be-current one in that pointer. */
compiler->function = NULL;
compiler->type = type;
compiler->localCount = 0;
compiler->scopeDepth = 0;
compiler->function = newFunction(); /* Then we allocate a new function object to compile into */
current = compiler;
if (type != TYPE_SCRIPT) {
current->function->name = copyString(parser.previous.start, parser.previous.length);
}
/*
compiler’s locals array keeps track of which stack slots are associated with which local variables or temporaries.
From now on, the compiler implicitly claims stack slot zero for the VM’s own internal use. We give it an empty name so
that the user can’t write an identifier that refers to it.
*/
Local* local = ¤t->locals[current->localCount++];
local->depth = 0;
local->isCaptured = false;
local->name.start = "";
local->name.length = 0;
}
static ObjFunction* endCompiler() {
emitReturn();
/*
Previously, when `interpret()` called into the compiler, it passed in a Chunk to be written to.
Now that the compiler creates the function object itself, we return that function.
*/
ObjFunction* function = current->function;
#ifdef DEBUG_PRINT_CODE
if(!parser.hadError) {
disassembleChunk(currentChunk(), function->name != NULL ? function->name->chars : "<script>");
}
#endif
current = current->enclosing; /* When a Compiler finishes, it pops itself off the stack */
return function;
}
static void beginScope() {
/* In order to “create” a scope, all we do is increment the current depth. */
++current->scopeDepth;
}
static void endScope() {
--current->scopeDepth;
/* Deleting (discarding) the local variables in a specific scope aftr it ends */
while (current->localCount > 0 && current->locals[current->localCount - 1].depth > current->scopeDepth) {
if (current->locals[current->localCount - 1].isCaptured) {
emitByte(OP_CLOSE_UPVALUE);
} else {
emitByte(OP_POP);
}
--current->localCount;
}
}
static void expression();
static void statement();
static void declaration();
static ParseRule* getRule(TokenType type);
static void parsePrecedence(Precedence precedence);
static uint8_t identifierConstant(Token* name);
static uint8_t parseVariable(const char* errorMessage);
static void defineVariable(uint8_t global);
static int resolveLocal(Compiler* compiler, Token* name);
static void and_(bool canAssign);
static void markInitialized();
static uint8_t argumentList();
static int resolveUpvalue(Compiler* compiler, Token* name);
static void binary(bool canAssign) {
TokenType operatorType = parser.previous.type;
ParseRule* rule = getRule(operatorType);
parsePrecedence((Precedence)(rule->precedence + 1));
switch (operatorType) {
case TOKEN_BANG_EQUAL: emitBytes(OP_EQUAL, OP_NOT); break;
case TOKEN_EQUAL_EQUAL: emitByte(OP_EQUAL); break;
case TOKEN_GREATER: emitByte(OP_GREATER); break;
case TOKEN_GREATER_EQUAL: emitBytes(OP_LESS, OP_NOT); break;
case TOKEN_LESS: emitByte(OP_LESS); break;
case TOKEN_LESS_EQUAL: emitBytes(OP_GREATER, OP_NOT); break;
case TOKEN_PLUS: emitByte(OP_ADD); break;
case TOKEN_MINUS: emitByte(OP_SUBTRACT); break;
case TOKEN_STAR: emitByte(OP_MULTIPLY); break;
case TOKEN_SLASH: emitByte(OP_DIVIDE); break;
case TOKEN_BACKSLASH: emitByte(OP_INT_DIVIDE); break;
case TOKEN_PERCENT: emitByte(OP_MODULUS); break;
default: return; // Unreachable
}
}
static void call(bool canAssign) {
/* We’ve already consumed the ( token, so next we compile the arguments using a separate `argumentList()` helper. */
uint8_t argCount = argumentList();
emitBytes(OP_CALL, argCount);
}
/*
When the parser encouters false, nil, or true it calls this new parser function
*/
static void literal(bool canAssign) {
switch (parser.previous.type) {
case TOKEN_FALSE: emitByte(OP_FALSE); break;
case TOKEN_NIL: emitByte(OP_NIL); break;
case TOKEN_TRUE: emitByte(OP_TRUE); break;
default: return; // Unreachable
}
}
static void expression() {
parsePrecedence(PREC_ASSIGNMENT);
}
static void block() {
/* This keeps parsing declarations and statements untill it his a closing brace or enf of file token */
while (!check(TOKEN_RIGHT_BRACE) && !check(TOKEN_EOF)) {
declaration();
}
consume(TOKEN_RIGHT_BRACE, "Expect '}' after block.");
}
static void function(FunctionType type) {
Compiler compiler;
initCompiler(&compiler, type);
beginScope();
consume(TOKEN_LEFT_PAREN, "Expect '(' after function name.");
/* Compiling the function parameters */
if (!check(TOKEN_RIGHT_PAREN)) {
do {
current->function->arity++;
if (current->function->arity > 255) {
errorAtCurrent("Can't have more than 255 parameters.");
}
uint8_t constant = parseVariable("Expect parameter name.");
defineVariable(constant);
} while (match(TOKEN_COMMA));
}
consume(TOKEN_RIGHT_PAREN, "Expect ')' after parameters.");
consume(TOKEN_LEFT_BRACE, "Expect '{' before function body.");
block();
ObjFunction* function = endCompiler();
emitBytes(OP_CLOSURE, makeConstant(OBJ_VAL(function)));
for (int i = 0; i < function->upvalueCount; ++i) {
/*
Each pair of operands specifies what that upvalue captures. If the first byte is one, it captures a local variable
in the enclosing function. If zero, it captures one of the function’s upvalues. The next byte is the local slot or upvalue index to capture.
*/
emitByte(compiler.upvalues[i].isLocal ? 1 : 0);
emitByte(compiler.upvalues[i].index);
}
}
static void funDeclaration() {
/*
Functions are first-class values, and a function declaration simply creates and stores one in a newly declared variable.
So we parse the name just like any other variable declaration.
A function declaration at the top level will bind the function to a global variable. Inside a block or other function,
a function declaration creates a local variable.
*/
uint8_t global = parseVariable("Expect function name.");
markInitialized(); /* Marking function as initialized before we compile the body. That way the name can be referenced inside the body without generating errors */
function(TYPE_FUNCTION);
defineVariable(global);
}
static void varDecleration() {
/* The `var` keyword is followed by a variable name that's compiled by `parseVariable` */
uint8_t global = parseVariable("Expect variable name.");
/*
Then we look for an = followed by an initializer expression. If the user doesn’t initialize the variable,
the compiler implicitly initializes it to nil by emitting an OP_NIL instruction.
*/
if (match(TOKEN_EQUAL)) {
expression();
} else {
emitByte(OP_NIL);
}
consume(TOKEN_SEMICOLON, "Expect ';' after variable declaration."); /* statement should be terminated using a semicolon */
defineVariable(global);
}
/*
An "expression statement" is simply an expression followed by a semicolon
Semanitcally, an expression statement evaluates the expression and discard the results.
*/
static void expressionStatement() {
expression();
consume(TOKEN_SEMICOLON, "Expect ';' after expression.");
emitByte(OP_POP); /* Discarding the results */
}
static void forStatement() {
beginScope(); /* If a for statement declares a variable, that variable should be scoped to the loop body. We ensure that by wrapping the whole statement in a scope. */
consume(TOKEN_LEFT_PAREN, "Expect '(' after 'for'.");
/* Initializer clause */
if (match(TOKEN_SEMICOLON)) {
/* No initializer*/
} else if (match(TOKEN_VAR)) {
varDecleration();
} else {
expressionStatement();
}
int loopStart = currentChunk()->count; /* points (address of) at the condition clause */
int exitJump = -1;
/* Next, is the condition clause/expression that can be used to exit the loop */
if (!match(TOKEN_SEMICOLON)) {
expression();
consume(TOKEN_SEMICOLON, "Expect ';' after loop condition.");
/* Jump out of the loop if the condition is false */
exitJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP); /* Discard the value of condition if it was true */
}
if (!match(TOKEN_RIGHT_PAREN)) {
int bodyJump = emitJump(OP_JUMP);
int incrementStart = currentChunk()->count; /* The address of the increment clause */
expression(); /* `incrementStart` points here */
emitByte(OP_POP);
consume(TOKEN_RIGHT_PAREN, "Expect ')' after for clauses.");
emitLoop(loopStart);
loopStart = incrementStart;
patchJump(bodyJump);
}
statement(); /* Body statement */
emitLoop(loopStart);
/* After the loop body we need to patch that jump */
if (exitJump != -1) {
patchJump(exitJump);
emitByte(OP_POP);
}
endScope();
}
static void ifStatement() {
consume(TOKEN_LEFT_PAREN, "Expect '(' after 'if'.");
expression();
consume(TOKEN_RIGHT_PAREN, "Expect ')' after condition.");
int thenJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP);
statement();
int elseJump = emitJump(OP_JUMP); /* Emitting a jump after the `if` statement body so we wont fall through and execute the else branch if the `if` condition was true */
patchJump(thenJump);
emitByte(OP_POP);
if (match(TOKEN_ELSE)) statement(); /* Checking for else statement */
patchJump(elseJump);
}
/*
if we did match the `print` token, then we compile the rest of the statement here.
*/
static void printStatement() {
expression();
consume(TOKEN_SEMICOLON, "Expect ';' after value.");
emitByte(OP_PRINT);
}
static void returnStatement() {
if (current->type == TYPE_SCRIPT) {
error("Can't return from top-level code.");
}
if (match(TOKEN_SEMICOLON)) {
emitReturn();
} else {
expression();
consume(TOKEN_SEMICOLON, "Expect ';' after return value.");
emitByte(OP_RETURN);
}
}
static void whileStatement() {
int loopStart = currentChunk()->count;
/* Compile the condition expression with the paranthses */
consume(TOKEN_LEFT_PAREN, "Expect '(' after 'while'.");
expression();
consume(TOKEN_RIGHT_PAREN, "Expect ')' after condition.");
int exitJump = emitJump(OP_JUMP_IF_FALSE); /* Exiting the loop if the condition was false */
emitByte(OP_POP);
statement(); /* compiling the body of the `while` */
/* After the body, we call this function to emit a “loop” instruction. That instruction needs to know how far back to jump. */
emitLoop(loopStart);
patchJump(exitJump);
emitByte(OP_POP);
}
/*
If we hit a compile error while parsing the previous statement, we enter panic mode.
When that happens, after the statement we start synchronizing
*/
static void synchronize() {
parser.panicMode = false;
while (parser.current.type != TOKEN_EOF) {
/*
We skip tokens indiscriminately until we reach something that looks like a statement boundary.
*/
if (parser.previous.type == TOKEN_SEMICOLON) return;
switch (parser.current.type) {
case TOKEN_CLASS:
case TOKEN_FUN:
case TOKEN_VAR:
case TOKEN_FOR:
case TOKEN_IF:
case TOKEN_WHILE:
case TOKEN_PRINT:
case TOKEN_RETURN:
return;
default:
; // Do nothing
}
advance();
}
}
static void declaration() {
if (match(TOKEN_FUN)) {
funDeclaration();
} else if (match(TOKEN_VAR)) {
varDecleration();
} else {
statement();
}
if (parser.panicMode) synchronize();
}
static void statement() {
if (match(TOKEN_PRINT)) {
printStatement();
} else if (match(TOKEN_FOR)) {
forStatement();
} else if (match(TOKEN_IF)) {
ifStatement();
} else if (match(TOKEN_RETURN)) {
returnStatement();
} else if (match(TOKEN_WHILE)) {
whileStatement();
} else if (match(TOKEN_LEFT_BRACE)) {
beginScope();
block();
endScope();
} else {
expressionStatement();
}
}
static void grouping(bool canAssign) {
expression();
consume(TOKEN_RIGHT_PAREN, "Expect ')' after expression.");
}
static void number(bool canAssign) {
double value = strtod(parser.previous.start, NULL);
emitConstant(NUMBER_VAL(value));
}
static void or_(bool canAssign) {
/*
In an or expression, if the left-hand side is truthy, then we skip over the right operand.
When the left-hand side is falsey, it does a tiny jump over the next statement.
That statement is an unconditional jump over the code for the right operand.
*/
int elseJump = emitJump(OP_JUMP_IF_FALSE);
int endJump = emitJump(OP_JUMP);
patchJump(elseJump);
emitByte(OP_POP);
parsePrecedence(PREC_OR);
patchJump(endJump);
}
static void string(bool canAssign) {
emitConstant(OBJ_VAL(copyString(parser.previous.start + 1, parser.previous.length - 2)));
}
static void namedVariable(Token name, bool canAssign) {
uint8_t getOp, setOp;
int arg = resolveLocal(current, &name); /* First we try to find a local variable with the given name */
if (arg != -1) {
/* If we found a local we use the instructions for working with locals */
getOp = OP_GET_LOCAL;
setOp = OP_SET_LOCAL;
}
else if ((arg = resolveUpvalue(current, &name)) != -1) {
/*
We consider the local scopes of enclosing functions
*/
getOp = OP_GET_UPVALUE;
setOp = OP_SET_UPVALUE;
} else {
/* Otherwise its a global */
arg = identifierConstant(&name);
getOp = OP_GET_GLOBAL;
setOp = OP_SET_GLOBAL;
}
if (canAssign && match(TOKEN_EQUAL)) {
expression();
emitBytes(setOp, (uint8_t)arg);
} else {
emitBytes(getOp, (uint8_t)arg);
}
}
static void variable(bool canAssign) {
namedVariable(parser.previous, canAssign);
}
static void unary(bool canAssign) {
TokenType operatorType = parser.previous.type;
// Compile the operand
parsePrecedence(PREC_UNARY);
// Emit the operator instruction
switch (operatorType) {
case TOKEN_BANG: emitByte(OP_NOT); break;
case TOKEN_MINUS: emitByte(OP_NEGATE); break;
default: return; // Unreachable
}
}
/* The table that drives our whole parser is an array of ParseRules */
ParseRule rules[] = {
[TOKEN_LEFT_PAREN] = {grouping, call, PREC_CALL},
[TOKEN_RIGHT_PAREN] = {NULL, NULL, PREC_NONE},
[TOKEN_LEFT_BRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_RIGHT_BRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_COMMA] = {NULL, NULL, PREC_NONE},
[TOKEN_DOT] = {NULL, NULL, PREC_NONE},
[TOKEN_MINUS] = {unary, binary, PREC_TERM},
[TOKEN_PLUS] = {NULL, binary, PREC_TERM},
[TOKEN_SEMICOLON] = {NULL, NULL, PREC_NONE},
[TOKEN_SLASH] = {NULL, binary, PREC_FACTOR},
[TOKEN_STAR] = {NULL, binary, PREC_FACTOR},
[TOKEN_BACKSLASH] = {NULL, binary, PREC_FACTOR},
[TOKEN_PERCENT] = {NULL, binary, PREC_FACTOR},
[TOKEN_BANG] = {unary, NULL, PREC_NONE},
[TOKEN_BANG_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_EQUAL] = {NULL, NULL, PREC_NONE},
[TOKEN_EQUAL_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_GREATER] = {NULL, binary, PREC_COMPARISON},
[TOKEN_GREATER_EQUAL] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS_EQUAL] = {NULL, binary, PREC_COMPARISON},
[TOKEN_IDENTIFIER] = {variable, NULL, PREC_NONE},
[TOKEN_STRING] = {string, NULL, PREC_NONE},
[TOKEN_NUMBER] = {number, NULL, PREC_NONE},
[TOKEN_AND] = {NULL, and_, PREC_AND},
[TOKEN_CLASS] = {NULL, NULL, PREC_NONE},
[TOKEN_ELSE] = {NULL, NULL, PREC_NONE},
[TOKEN_FALSE] = {literal, NULL, PREC_NONE},
[TOKEN_FOR] = {NULL, NULL, PREC_NONE},
[TOKEN_FUN] = {NULL, NULL, PREC_NONE},
[TOKEN_IF] = {NULL, NULL, PREC_NONE},
[TOKEN_NIL] = {literal, NULL, PREC_NONE},
[TOKEN_OR] = {NULL, or_, PREC_OR},
[TOKEN_PRINT] = {NULL, NULL, PREC_NONE},
[TOKEN_RETURN] = {NULL, NULL, PREC_NONE},
[TOKEN_SUPER] = {NULL, NULL, PREC_NONE},
[TOKEN_THIS] = {NULL, NULL, PREC_NONE},
[TOKEN_TRUE] = {literal, NULL, PREC_NONE},
[TOKEN_VAR] = {NULL, NULL, PREC_NONE},
[TOKEN_WHILE] = {NULL, NULL, PREC_NONE},
[TOKEN_ERROR] = {NULL, NULL, PREC_NONE},
[TOKEN_EOF] = {NULL, NULL, PREC_NONE},
};
/*
This function starts at the current token and recursively parses any expression at the given precedence level or higher
*/
static void parsePrecedence(Precedence precedence) {
advance();
ParseFn prefixRule = getRule(parser.previous.type)->prefix;
if (prefixRule == NULL) {
error("Expect expression.");
return;
}
bool canAssign = precedence <= PREC_ASSIGNMENT;
prefixRule(canAssign);
while (precedence <= getRule(parser.current.type)->precedence) {
advance();
ParseFn infixRule = getRule(parser.previous.type)->infix;
infixRule(canAssign);
}
if (canAssign && match(TOKEN_EQUAL)) {
error("Invalid assignment target.");
}
}
/*
This function takes the given token and adds its lexeme to the chunk’s constant table as a string. It then returns the index of that constant in the constant table.
*/
static uint8_t identifierConstant(Token* name) {
return makeConstant(OBJ_VAL(copyString(name->start, name->length)));
}
static bool identifiersEqual(Token* a, Token* b) {
if (a->length != b->length) return false;
return memcmp(a->start, b->start, a->length) == 0;
}
/*
We resolve local variables using this function
*/
static int resolveLocal(Compiler* compiler, Token* name) {
for (int i = compiler->localCount - 1; i >= 0; --i) {
Local* local = &compiler->locals[i];
if (identifiersEqual(name, &local->name)) {
/* When we resolve a reference to a local variable, we check the scope depth to see if it’s fully defined. */
if (local->depth == -1)
error("Can't read local variable in its own initializer.");
return i;
}
}
return -1;
}
static int addUpvalue(Compiler* compiler, uint8_t index, bool isLocal) {
int upvalueCount = compiler->function->upvalueCount;
for (int i = 0; i < upvalueCount; ++i) {
Upvalue* upvalue = &compiler->upvalues[i];
/*
Before we add an upvalue we first check to see if the function already has an upvalue that closes over that variable
*/
if (upvalue->index == index && upvalue->isLocal == isLocal) {
return i;
}
}
if (upvalueCount == UINT8_COUNT) {
error("Too many closure variables in function.");
return 0;
}
compiler->upvalues[upvalueCount].isLocal = isLocal;
compiler->upvalues[upvalueCount].index = index;
return compiler->function->upvalueCount++;
}
/*
This new `resolveUpvalue` function looks for a local variable declared in any of the surrounding functions.
If it finds one, it returns an “upvalue index” for that variable. Otherwise it returns `-1` to indicate the
variable wasnt found.
*/
static int resolveUpvalue(Compiler* compiler, Token* name) {
/* If the enclosing compiler is `NULL` we know we reached the outermost function without finding the local variable */
if (compiler->enclosing == NULL) return -1;
/* Otherwise, we try to resolve the identifier as a local variable in the enclosing compiler */
int local = resolveLocal(compiler->enclosing, name);
if (local != -1) {
/* If we found the local we add it to the current compiler */
compiler->enclosing->locals[local].isCaptured = true;
return addUpvalue(compiler, (uint8_t)local, true);
}
/* a closure also captures an existing upvalue in the immediately enclosing function. */
int upvalue = resolveUpvalue(compiler->enclosing, name);
if (upvalue != -1) {
/*
Note that the new call to `addUpvalue` passes `false` for the `isLocal` parameter. This flag controls
whether the closure captures a local variable or an upvalue from the surrounding function.
*/
return addUpvalue(compiler, (uint8_t)upvalue, false);
}
return -1;
}
/*
To see if two identifiers are the same, we use this function.
*/
static void addLocal(Token name) {
if (current->localCount == UINT8_COUNT) {
error("Too many local variables in function.");
return;
}
Local* local = ¤t->locals[current->localCount++];
local->name = name;
local->depth = -1; /* -1 indicates uninitialized state of the variable */
local->isCaptured = false;
}
/*
This initializes the next available Local in the compiler’s array of variables. It stores the variable’s name and the depth of the scope that owns the variable.
*/
static void declareVariable() {
if (current->scopeDepth == 0) return;
Token* name = &parser.previous;
for (int i = current->localCount - 1; i >= 0; --i) {
Local* local = ¤t->locals[i];
if (local->depth != -1 && local->depth < current->scopeDepth)
break;
if (identifiersEqual(name, &local->name))
error("Redeclaration of the variable at the same scope.");
}
addLocal(*name);
}
static uint8_t parseVariable(const char* errorMessage) {
consume(TOKEN_IDENTIFIER, errorMessage);
declareVariable(); /* Declare the variable */
if (current->scopeDepth > 0) return 0; /* we exit the function if we’re in a local scope and return a dummy index */
return identifierConstant(&parser.previous);
}
/*
Once the variable’s initializer has been compiled, we mark it initialized by changing the depth from `-1` to the current scope depth.
*/
static void markInitialized() {
if (current->scopeDepth == 0) return;
current->locals[current->localCount - 1].depth = current->scopeDepth;
}
static void defineVariable(uint8_t global) {
if (current->scopeDepth > 0) {
markInitialized();
return;
}
emitBytes(OP_DEFINE_GLOBAL, global);
}
static uint8_t argumentList() {
uint8_t argCount = 0;
if (!check(TOKEN_RIGHT_PAREN)) {
do {
/*
Each argument expression generates code that leaves its value on the stack in preparation for the call
*/
expression();
if (argCount == 255) {
error("Can't have more than 255 arguments.");
}
argCount++;
} while (match(TOKEN_COMMA));
}
consume(TOKEN_RIGHT_PAREN, "Expect ')' after arguments.");
return argCount;
}
static void and_(bool canAssign) {
/*
he left-hand side expression has already been compiled. That means at runtime, its value will be on top of the stack.
If that value is falsey, then we know the entire and must be false, so we skip the right operand and leave the left-hand
side value as the result of the entire expression.
Otherwise, we discard the left-hand value and evaluate the right operand which becomes the result of the whole and expression.
*/
int endJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP);
parsePrecedence(PREC_AND);
patchJump(endJump);
}
static ParseRule* getRule(TokenType type) {
return &rules[type];
}
ObjFunction* compile(const char* source) {
initScanner(source);
Compiler compiler;
initCompiler(&compiler, TYPE_SCRIPT);
parser.hadError = false;
parser.panicMode = false;
advance();
/* We keep compiling declerations until we hit the end of a source file */
while (!match(TOKEN_EOF)) {
declaration();
}
ObjFunction* function = endCompiler();
return parser.hadError ? NULL : function;
}