-
Notifications
You must be signed in to change notification settings - Fork 17
/
harminv.c
809 lines (677 loc) · 26.2 KB
/
harminv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/* Copyright (C) 2017 Massachusetts Institute of Technology.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "harminv-int.h"
#include "check.h"
/**************************************************************************/
/* Workaround for weird problem observed on Debian/stable with glibc
2.2.5 and gcc 2.95.4, 3.3.1, and 3.4.0: the stand-alone code works
fine, but crashes in clog once I link from another (C++) program.
I can't reproduce this on Debian/testing with glibc 2.3.2, and it
passes valgrind on that machine (valgrind crashes on the first
machine), so I'm guessing this is some weird glibc bug...using
my "own" clog function seems to work around the problem. */
#undef clog
#define clog my_clog
static cmplx my_clog(cmplx z) { return (log(cabs(z)) + I * carg(z)); }
/**************************************************************************/
/* The harminv routines are designed to perform "harmonic inversion."
That is, given a signal (a set of samples as a function of time),
they decompose the signal into a finite number of (possibly
exponentially-decaying) sinusoids.
Essentially, because we assume that the signal has this form, we
can determine the frequencies, decay constants, and amplitudes of
the sinusoids much more accurately than we could via taking the FFT
and looking at the peaks, for the same number of samples.
We use a low-storage "filter diagonalization method" (FDM) for finding
the sinusoids near a given frequency interval, described in:
V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time
signals," J. Chem. Phys., vol. 107, no. 17, p. 6756-6769 (Nov. 1
1997). See also erratum, ibid, vol. 109, no. 10, p. 4128 (Sep. 8
1998).
with a refinement (for generate_U below) described in:
Rongqing Chen and Hua Guo, "Efficient calculation of matrix
elements in low storate filter diagonalization," J. Chem. Phys.,
vol. 111, no. 2, p. 464-471(Jul. 8 1999).
The seminal work (though less practical than the M&T algorithm) on
this class of methods was done by:
Michael R. Wall and Daniel Neuhauser, "Extraction, through
filter-diagonalization, of general quantum eigenvalues or classical
normal mode frequencies from a small number of residues or a
short-time segment of a signal. I. Theory and application to a
quantum-dynamics model," J. Chem. Phys., 102, no. 20, p. 8011-8022
(May 22 1995).
A more recent reference is:
V. A. Mandelshtam, "On harmonic inversion of cross-correlation
functions by the filter diagonalization method," J. Theoretical and
Computational Chemistry 2 (4), 497-505 (2003).
*/
/**************************************************************************/
#define TWOPI 6.2831853071795864769252867665590057683943388
/**************************************************************************/
/* Crays have float == double, and don't have the Z* functions in
LAPACK/BLAS...we have to use C*. Sigh. */
#if defined(CRAY) || defined(_UNICOS) || defined(_CRAYMPP)
#define BLAS_FUNC(x, X) F77_FUNC(c##x, C##X)
#else /* ! CRAY */
#define BLAS_FUNC(x, X) F77_FUNC(z##x, Z##X)
#endif /* ! CRAY */
#define ZGEEV BLAS_FUNC(geev, GEEV)
#define ZGGEVX BLAS_FUNC(ggevx, GGEVX)
#define ZGGEV BLAS_FUNC(ggev, GGEV)
#define ZGEMM BLAS_FUNC(gemm, GEMM)
#define ZCOPY BLAS_FUNC(copy, COPY)
#define ZAXPY BLAS_FUNC(axpy, AXPY)
#define ZGEMV BLAS_FUNC(gemv, GEMV)
#define ZSCAL BLAS_FUNC(scal, SCAL)
#ifdef __cplusplus
extern "C" {
#endif
/* We have to pass strings in special ways on Crays, even
for passing a single character as with LAPACK. Sigh. */
#if defined(CRAY) || defined(_UNICOS) || defined(_CRAYMPP)
#include <fortran.h>
#define FCHARP _fcd
#define F_(s) _cptofcd(s, 1) /* second argument is the string length */
#else /* ! CRAY */
#define FCHARP const char *
#define F_(s) (s)
#endif
extern void ZGEEV(FCHARP, FCHARP, int *, cmplx *, int *, cmplx *, cmplx *, int *, cmplx *, int *,
cmplx *, int *, double *, int *);
extern void ZGGEVX(FCHARP balanc, FCHARP jobvl, FCHARP jobvr, FCHARP sense, int *n, cmplx *a,
int *lda, cmplx *b, int *ldb, cmplx *alpha, cmplx *beta, cmplx *vl, int *,
cmplx *vr, int *, int *ilo, int *ihi, double *lscale, double *rscale,
double *abnrm, double *bbnrm, double *rconde, double *rcondv, cmplx *wrk,
int *lwork, double *rwork, int *iwork, int *bwork, int *info);
extern void ZGGEV(FCHARP jobvl, FCHARP jobvr, int *n, cmplx *a, int *lda, cmplx *b, int *ldb,
cmplx *alpha, cmplx *beta, cmplx *vl, int *, cmplx *vr, int *, cmplx *wrk,
int *lwork, double *rwork, int *info);
extern void ZGEMM(FCHARP, FCHARP, int *, int *, int *, cmplx *, cmplx *, int *, cmplx *, int *,
cmplx *, cmplx *, int *);
extern void ZCOPY(int *, const cmplx *, int *, cmplx *, int *);
extern void ZAXPY(int *, cmplx *, cmplx *, int *, cmplx *, int *);
extern void ZGEMV(FCHARP, int *, int *, cmplx *, cmplx *, int *, cmplx *, int *, cmplx *, cmplx *,
int *);
extern void ZSCAL(int *, cmplx *, cmplx *, int *);
extern void HARMINV_ZDOTU(cmplx *, int *, cmplx *, int *, cmplx *, int *);
#ifdef __cplusplus
} /* extern "C" */
#endif
/**************************************************************************/
/* compute c^n, where n is an integer: */
static cmplx cpow_i(cmplx c, int n) {
if (n < 0)
return (1.0 / cpow_i(c, -n));
else {
cmplx result = 1;
while (n > 1) {
if (n % 2 == 1) result *= c;
c *= c;
n /= 2;
}
if (n > 0) result *= c;
return result;
}
}
/* Computing powers by cumulative multiplication, below, is faster
than calling cpow_i repeatedly, but accumulates O(n) floating-point
error. As a compromise, we call cpow_i every NPOW iterations, which
accumulates only O(NPOW) error. */
#define NPOW 8
/* FIXME: instead of this, we should really do the first-order expansion
of the U matrix in |z - z2|, below. */
#define SMALL (1e-12)
#define C_CLOSE(c1, c2) (cabs((c1) - (c2)) < SMALL)
/**************************************************************************/
/* Initialize the JxJ2 matrix U = U_p(z,z2), as described in M&T.
Also, if U1 != NULL, then set U1 = U_{p+1}(z,z2). If z == z2, it
must be the case that no two elements of z are the same and that
J2 == J1; in this case the matrix U will be symmetric. Note that c
must be an array whose size n, is at least 2*K+p elements. */
static void generate_U(cmplx *U, cmplx *U1, int p, const cmplx *c, int n, int K, int J, int J2,
const cmplx *z, const cmplx *z2, cmplxl **G0, cmplxl **G0_M, cmplxl **D0) {
int M = K - 1;
int i, j, m;
/* temp. arrays for 1/z, z^(-m), z^(-M), the G function of C&G,
and the diagonal elements D[i] = U(z[i],z[i]): */
cmplx *z_inv, *z_m, *z_M;
cmplxl *G, *G_M, *D;
cmplx *z2_inv, *z2_m, *z2_M;
cmplxl *G2, *G2_M;
CHECK(U && c && z && z2, "invalid arguments to generate_U");
CHECK(n >= 2 * K + p, "too few coefficients in generate_U");
CHECK(z != z2 || J == J2, "invalid sizes passed to generate_U");
CHECK((!G0 && !G0_M && !D0) || (G0 && G0_M && D0), "G0/G0_M/D0 must be all-non-NULL/all-NULL");
CHECK(!G0 || (!*G0 && !*G0_M && !*D0) || (*G0 && *G0_M && *D0),
"*G0/*G0_M/*D0 must be all-non-NULL/all-NULL");
/* Now, compute U according to eqs. 25-27 of Chen & Guo, but
using the notation of eq. 25 of M&T. This operation has
complexity O(N*J + J*J). At the same time, we can compute the
matrix U1 as well by eqs. 29-30 of C&G, saving an extra pass
over the input array. */
/* first, set up some temporary arrays for caching things like
z^m and 1/z, so we don't need to recompute them all the time. */
CHK_MALLOC(z_inv, cmplx, J);
CHK_MALLOC(z_m, cmplx, J);
CHK_MALLOC(z_M, cmplx, J);
if (G0 && *G0) {
G = *G0;
G_M = *G0_M;
D = *D0;
}
else {
CHK_MALLOC(G, cmplxl, J);
CHK_MALLOC(G_M, cmplxl, J);
CHK_MALLOC(D, cmplxl, J);
for (i = 0; i < J; ++i) {
D[i] = G[i] = G_M[i] = 0;
}
}
for (i = 0; i < J; ++i) {
z_inv[i] = 1.0 / z[i];
z_m[i] = 1;
z_M[i] = cpow_i(z[i], -M);
}
if (z2 != z) {
CHK_MALLOC(z2_inv, cmplx, J2);
CHK_MALLOC(z2_m, cmplx, J2);
CHK_MALLOC(z2_M, cmplx, J2);
CHK_MALLOC(G2, cmplxl, J2);
CHK_MALLOC(G2_M, cmplxl, J2);
for (i = 0; i < J2; ++i) {
z2_inv[i] = 1.0 / z2[i];
z2_m[i] = 1;
z2_M[i] = cpow_i(z2[i], -M);
G2[i] = G2_M[i] = 0;
}
}
else {
z2_inv = z2_m = z2_M = NULL;
G2 = G2_M = NULL;
}
/* First, loop over the signal array (c), building up the
spectral functions G and G_M (corresponding to G_p and
G_{p+M+1} in C&G), as well as the diagonal matrix entries: */
for (m = 0; m <= M; ++m) {
cmplx c1 = c[m + p], c2 = c[m + p + M + 1];
double d = m + 1; /* M - fabs(M - m) + 1 */
double d2 = M - m; /* M - fabs(M - (m + M + 1)) + 1 */
if (!G0 || !*G0) {
for (i = 0; i < J; ++i) {
cmplx x1 = z_m[i] * c1;
cmplx x2 = z_m[i] * c2;
G[i] += x1;
G_M[i] += x2;
D[i] += x1 * d + x2 * d2 * z_M[i] * z_inv[i];
if (m % NPOW == NPOW - 1)
z_m[i] = cpow_i(z_inv[i], m + 1);
else
z_m[i] *= z_inv[i];
}
}
if (z2 != z)
for (i = 0; i < J2; ++i) {
G2[i] += z2_m[i] * c1;
G2_M[i] += z2_m[i] * c2;
if (m % NPOW == NPOW - 1)
z2_m[i] = cpow_i(z2_inv[i], m + 1);
else
z2_m[i] *= z2_inv[i];
}
}
/* Compute U (or just the upper part if U is symmetric), via the
formula from C&G; compute U1 at the same time as in C&G. */
if (z2 != z) {
for (i = 0; i < J; ++i)
for (j = 0; j < J2; ++j) {
if (C_CLOSE(z[i], z2[j]))
U[i * J2 + j] = D[i];
else
U[i * J2 + j] =
(z[i] * G2[j] - z2[j] * G[i] + z2_M[j] * G_M[i] - z_M[i] * G2_M[j]) / (z[i] - z2[j]);
}
if (U1)
for (i = 0; i < J; ++i)
for (j = 0; j < J2; ++j) {
if (C_CLOSE(z[i], z2[j]))
U1[i * J2 + j] = z[i] * (D[i] - G[i]) + z_M[i] * G_M[i];
else
U1[i * J2 + j] = (z[i] * z2[j] * (G2[j] - G[i]) + z2_M[j] * z[i] * G_M[i] -
z_M[i] * z2[j] * G2_M[j]) /
(z[i] - z2[j]);
}
}
else { /* z == z2 */
for (i = 0; i < J; ++i) {
U[i * J + i] = D[i];
for (j = i + 1; j < J; ++j) {
U[i * J + j] =
(z[i] * G[j] - z[j] * G[i] + z_M[j] * G_M[i] - z_M[i] * G_M[j]) / (z[i] - z[j]);
}
}
if (U1)
for (i = 0; i < J; ++i) {
U1[i * J + i] = z[i] * (D[i] - G[i]) + z_M[i] * G_M[i];
for (j = i + 1; j < J; ++j) {
U1[i * J + j] =
(z[i] * z[j] * (G[j] - G[i]) + z_M[j] * z[i] * G_M[i] - z_M[i] * z[j] * G_M[j]) /
(z[i] - z[j]);
}
}
}
/* finally, copy the upper to the lower triangle if U is symmetric: */
if (z == z2) {
for (i = 0; i < J; ++i)
for (j = i + 1; j < J; ++j)
U[j * J + i] = U[i * J + j];
if (U1)
for (i = 0; i < J; ++i)
for (j = i + 1; j < J; ++j)
U1[j * J + i] = U1[i * J + j];
}
free(G2_M);
free(G2);
free(z2_M);
free(z2_m);
free(z2_inv);
if (G0 && !*G0) {
*G0 = G;
*G0_M = G_M;
*D0 = D;
}
else if (!G0) {
free(D);
free(G_M);
free(G);
}
free(z_M);
free(z_m);
free(z_inv);
}
/**************************************************************************/
static void init_z(harminv_data d, int J, cmplx *z) {
d->J = J;
d->z = z;
CHK_MALLOC(d->U0, cmplx, J * J);
CHK_MALLOC(d->U1, cmplx, J * J);
generate_U(d->U0, d->U1, 0, d->c, d->n, d->K, d->J, d->J, d->z, d->z, &d->G0, &d->G0_M, &d->D0);
}
/**************************************************************************/
harminv_data harminv_data_create(int n, const cmplx *signal, double fmin, double fmax, int nf) {
int i;
harminv_data d;
CHECK(nf > 1, "# frequencies must > 1");
CHECK(n > 0, "invalid number of data points");
CHECK(signal, "invalid NULL signal array");
CHECK(fmin < fmax, "should have fmin < fmax");
CHK_MALLOC(d, struct harminv_data_struct, 1);
d->c = signal;
d->n = n;
d->K = n / 2 - 1;
d->fmin = fmin;
d->fmax = fmax;
d->nfreqs = -1; /* we haven't computed eigen-solutions yet */
d->B = d->u = d->amps = d->U0 = d->U1 = (cmplx *)NULL;
d->G0 = d->G0_M = d->D0 = (cmplxl *)NULL;
d->errs = (double *)NULL;
CHK_MALLOC(d->z, cmplx, nf);
for (i = 0; i < nf; ++i)
d->z[i] = cexp(-I * TWOPI * (fmin + i * ((fmax - fmin) / (nf - 1))));
init_z(d, nf, d->z);
return d;
}
/**************************************************************************/
void harminv_data_destroy(harminv_data d) {
if (d) {
free(d->u);
free(d->B);
free(d->U1);
free(d->U0);
free(d->G0);
free(d->G0_M);
free(d->D0);
free(d->z);
free(d->amps);
free(d->errs);
free(d);
}
}
/**************************************************************************/
/* Compute the symmetric dot product of x and y, both vectors of
length n. If they are column-vectors, this is: transpose(x) * y.
(We could use the BLAS ZDOTU function for this, but calling Fortran
functions, as opposed to subroutines, from C is problematic.) */
static cmplx symmetric_dot(int n, cmplx *x, cmplx *y) {
cmplxl dot = 0;
int i;
for (i = 0; i < n; ++i)
dot += x[i] * y[i];
return dot;
}
/**************************************************************************/
/**************************************************************************/
/* Solve for the eigenvalues (v) and eigenvectors (rows of V) of the
complex-symmetric n x n matrix A. The eigenvectors are normalized
to 1 according to the symmetric dot product (i.e. no complex
conjugation). */
static void solve_eigenvects(int n, const cmplx *A0, cmplx *V, cmplx *v) {
int lwork, info;
cmplx *work;
double *rwork;
cmplx *A;
/* according to the ZGEEV documentation, the matrix A is overwritten,
and we don't want to overwrite our input A0 */
CHK_MALLOC(A, cmplx, n * n);
{
int n2 = n * n, one = 1;
ZCOPY(&n2, A0, &one, A, &one);
}
/* Unfortunately, LAPACK doesn't have a special solver for the
complex-symmetric eigenproblem. For now, just use the general
non-symmetric solver, and realize that the left eigenvectors
are the complex-conjugates of the right eigenvectors. */
#if 0 /* LAPACK seems to be buggy here, returning ridiculous sizes at times */
cmplx wsize;
lwork = -1; /* compute optimal workspace size */
ZGEEV(F_("N"), F_("V"), &n, A, &n, v, V, &n, V, &n, &wsize, &lwork, rwork, &info);
if (info == 0)
lwork = floor(creal(wsize) + 0.5);
else
lwork = 2*n;
CHECK(lwork > 0, "zgeev is not returning a positive work size!");
#else
lwork = 4 * n; /* minimum is 2*n; we'll be generous. */
#endif
CHK_MALLOC(rwork, double, 2 * n);
CHK_MALLOC(work, cmplx, lwork);
ZGEEV(F_("N"), F_("V"), &n, A, &n, v, V, &n, V, &n, work, &lwork, rwork, &info);
free(work);
free(rwork);
free(A);
CHECK(info >= 0, "invalid argument to ZGEEV");
CHECK(info <= 0, "failed convergence in ZGEEV");
/* Finally, we need to fix the normalization of the eigenvectors,
since LAPACK normalizes them under the ordinary dot product,
i.e. with complex conjugation. (In principle, do we also need
to re-orthogonalize, for the case of degenerate eigenvalues?) */
{
int i, one = 1;
for (i = 0; i < n; ++i) {
cmplx norm = 1.0 / csqrt(symmetric_dot(n, V + i * n, V + i * n));
ZSCAL(&n, &norm, V + i * n, &one);
}
}
}
/**************************************************************************/
/* how conservative do we need to be for this? */
#define SINGULAR_THRESHOLD 1e-5
/* Solve the eigenvalue problem U1 b = u U0 b, where b is the eigenvector
and u is the eigenvalue. u = exp(iwt - at) then contains both the
frequency and the decay constant. */
void harminv_solve_once(harminv_data d) {
int J, i, one = 1;
cmplx zone = 1.0, zzero = 0.0;
cmplx *V0, *v0, *H1, *V1; /* for eigensolutions of U0 and U1 */
double max_v0 = 0.0;
J = d->J;
CHK_MALLOC(V0, cmplx, J * J);
CHK_MALLOC(v0, cmplx, J);
/* Unfortunately, U0 is very likely to be singular, so we must
first extract the non-singular eigenvectors and only work in
that sub-space. See the Wall & Neuhauser paper. */
solve_eigenvects(J, d->U0, V0, v0);
/* find maximum |eigenvalue| */
for (i = 0; i < J; ++i) {
double v = cabs(v0[i]);
if (v > max_v0) max_v0 = v;
}
/* we must remove the singular components of U0, those
that are less than some threshold times the maximum eigenvalue.
Also, we need to scale the eigenvectors by 1/sqrt(eigenval). */
d->nfreqs = J;
for (i = 0; i < J; ++i) {
if (cabs(v0[i]) < SINGULAR_THRESHOLD * max_v0) {
v0[i] = 0; /* tag as a "hole" */
d->nfreqs -= 1;
}
else { /* not singular */
cmplx s;
int j;
/* move the eigenvector to the first "hole" left by
deleting singular eigenvalues: */
for (j = 0; j < i && v0[j] != 0.0; ++j)
;
if (j < i) {
ZCOPY(&J, V0 + i * J, &one, V0 + j * J, &one);
v0[j] = v0[i];
v0[i] = 0; /* tag as a "hole" */
}
s = 1.0 / csqrt(v0[j]);
ZSCAL(&J, &s, V0 + j * J, &one);
}
}
CHK_MALLOC(d->B, cmplx, d->nfreqs * J);
CHK_MALLOC(d->u, cmplx, d->nfreqs);
CHK_MALLOC(V1, cmplx, d->nfreqs * d->nfreqs);
CHK_MALLOC(H1, cmplx, d->nfreqs * d->nfreqs);
/* compute H1 = V0 * U1 * V0': */
/* B = V0 * U1: */
ZGEMM(F_("N"), F_("N"), &J, &d->nfreqs, &J, &zone, d->U1, &J, V0, &J, &zzero, d->B, &J);
/* H1 = B * transpose(V0) */
ZGEMM(F_("T"), F_("N"), &d->nfreqs, &d->nfreqs, &J, &zone, V0, &J, d->B, &J, &zzero, H1,
&d->nfreqs);
/* Finally, we can find the eigenvalues and eigenvectors: */
solve_eigenvects(d->nfreqs, H1, V1, d->u);
/* B = V1 * V0: */
ZGEMM(F_("N"), F_("N"), &J, &d->nfreqs, &d->nfreqs, &zone, V0, &J, V1, &d->nfreqs, &zzero, d->B,
&J);
free(H1);
free(V1);
free(v0);
free(V0);
}
/**************************************************************************/
/* After solving once, solve again using the solutions from last
time as the input to the spectra estimator this time.
Optionally, if mode_ok is not NULL, we can only use the solutions k from
last time that pass ok(d, k, ok_d). Currently, this is not recommended
as it seems to make things worse. */
void harminv_solve_again(harminv_data d, harminv_mode_ok_func ok, void *ok_d) {
int i, j;
char *mode_ok = 0;
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
if (!d->nfreqs) return; /* no eigensolutions to work with */
if (ok) {
CHK_MALLOC(mode_ok, char, d->nfreqs);
ok(d, -1, ok_d); /* initialize */
for (i = 0; i < d->nfreqs; ++i)
mode_ok[i] = ok(d, i, ok_d);
}
free(d->B);
free(d->U1);
free(d->U0);
free(d->G0);
free(d->G0_M);
free(d->D0);
free(d->z);
free(d->amps);
free(d->errs);
d->B = d->U1 = d->U0 = d->z = d->amps = (cmplx *)NULL;
d->G0 = d->G0_M = d->D0 = (cmplxl *)NULL;
d->errs = (double *)NULL;
/* Spectral grid needs to be on the unit circle or system is unstable: */
for (i = j = 0; i < d->nfreqs; ++i)
if (!ok || mode_ok[i]) d->u[j++] = d->u[i] / cabs(d->u[i]);
d->nfreqs = j;
if (ok) {
ok(d, -2, ok_d); /* finish */
free(mode_ok);
}
d->u = (cmplx *)realloc(d->u, sizeof(cmplx) * d->nfreqs);
if (!d->nfreqs) return; /* no eigensolutions to work with */
init_z(d, d->nfreqs, d->u);
d->nfreqs = 0;
d->B = d->u = NULL;
harminv_solve_once(d);
}
/**************************************************************************/
/* Keep re-solving as long as spurious solutions are eliminated.
Currently, it is recommended that you use harminv_solve (i.e. pass ok = 0);
see harminv_solve_again. */
void harminv_solve_ok_modes(harminv_data d, harminv_mode_ok_func ok, void *ok_d) {
harminv_solve_once(d);
/* This is not in the papers, but seems to be a good idea:
plug the u's back in as z's for another pass, and repeat
as long as the number of eigenvalues decreases. Effectively,
this gives us more basis functions where the modes are. */
{
int prev_nf, cur_nf, nf_ok;
cur_nf = harminv_get_num_freqs(d);
do {
prev_nf = cur_nf;
harminv_solve_again(d, ok, ok_d);
cur_nf = harminv_get_num_freqs(d);
if (ok) {
ok(d, -1, ok_d); /* initialize */
for (nf_ok = 0; nf_ok < cur_nf && ok(d, nf_ok, ok_d); ++nf_ok)
;
ok(d, -2, ok_d); /* finish */
}
else
nf_ok = cur_nf;
} while (cur_nf < prev_nf || nf_ok < cur_nf);
/* FIXME: solve one more time for good measure? */
}
}
/**************************************************************************/
void harminv_solve(harminv_data d) { harminv_solve_ok_modes(d, NULL, NULL); }
/**************************************************************************/
#define NORMSQR(c) (creal(c) * creal(c) + cimag(c) * cimag(c))
/* Returns an array (of size harminv_get_num_freqs(d)) of estimates
for the |error| in the solution frequencies. Solutions with
errors much larger than the smallest error are likely to be spurious. */
double *harminv_compute_frequency_errors(harminv_data d) {
int i, J2, one = 1;
cmplx *U2, *U2b;
double *freq_err;
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
if (!d->nfreqs) return NULL;
CHK_MALLOC(freq_err, double, d->nfreqs);
J2 = d->J * d->J;
CHK_MALLOC(U2, cmplx, J2);
generate_U(U2, NULL, 2, d->c, d->n, d->K, d->J, d->J, d->z, d->z, NULL, NULL, NULL);
CHK_MALLOC(U2b, cmplx, d->J);
/* For each eigenstate, compute an estimate of the error, roughly
as suggested in W&N, eq. (2.19). */
for (i = 0; i < d->nfreqs; ++i) {
cmplx zone = 1.0, zzero = 0.0;
/* compute U2b = U2 * B[i] */
ZGEMV(F_("T"), &d->J, &d->J, &zone, U2, &d->J, d->B + i * d->J, &one, &zzero, U2b, &one);
/* ideally, B[i] should satisfy U2 B[i] = u^2 U0 B[i].
since B U0 B = 1, then we can get a second estimate
for u by sqrt(B[i] U2 B[i]), and from this we compute
the relative error in the (complex) frequency. */
freq_err[i] = cabs(clog(csqrt(symmetric_dot(d->J, d->B + i * d->J, U2b)) / d->u[i])) /
cabs(clog(d->u[i]));
}
free(U2b);
free(U2);
return freq_err;
}
/**************************************************************************/
#define UNITY_THRESH 1e-4 /* FIXME? */
/* true if UNITY_THRESH < |u|^n < 1/UNITY_THRESH. */
static int u_near_unity(cmplx u, int n) {
double nlgabsu = n * log(cabs(u));
return (log(UNITY_THRESH) < nlgabsu && nlgabsu < -log(UNITY_THRESH));
}
/* Return an array (of size harminv_get_num_freqs(d)) of complex
amplitudes of each sinusoid in the solution. */
cmplx *harminv_compute_amplitudes(harminv_data d) {
int k, j;
cmplx *u;
cmplx *Uu;
cmplx *a; /* the amplitudes of the eigenfrequencies */
int ku, nu;
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
if (!d->nfreqs) return NULL;
CHK_MALLOC(a, cmplx, d->nfreqs);
CHK_MALLOC(u, cmplx, d->nfreqs);
for (k = ku = 0; k < d->nfreqs; ++k)
if (u_near_unity(d->u[k], d->n)) u[ku++] = d->u[k];
nu = ku;
CHK_MALLOC(Uu, cmplx, d->J * nu);
generate_U(Uu, NULL, 0, d->c, d->n, d->K, d->J, nu, d->z, u, &d->G0, &d->G0_M, &d->D0);
/* compute the amplitudes via eq. 27 of M&T, except when |u| is
too small..in that case, the computation of Uu is unstable,
and we use eq. 26 instead (which doesn't use half of the data,
but doesn't blow up either): */
for (k = ku = 0; k < d->nfreqs; ++k) {
cmplxl asum = 0;
if (u_near_unity(d->u[k], d->n)) { /* eq. 27 */
for (j = 0; j < d->J; ++j)
asum += d->B[k * d->J + j] * Uu[j * nu + ku];
asum /= d->K;
ku++;
}
else { /* eq. 26 */
for (j = 0; j < d->J; ++j)
asum += d->B[k * d->J + j] * d->G0[j];
}
a[k] = asum * asum;
}
free(Uu);
free(u);
return a;
}
/**************************************************************************/
int harminv_get_num_freqs(const harminv_data d) { return d->nfreqs; }
double harminv_get_freq(harminv_data d, int k) {
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
CHECK(k >= 0 && k < d->nfreqs, "argument out of range in harminv_get_freq");
return (-carg(d->u[k]) / TWOPI);
}
double harminv_get_decay(harminv_data d, int k) {
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
CHECK(k >= 0 && k < d->nfreqs, "argument out of range in harminv_get_decay");
return (-log(cabs(d->u[k])));
}
double harminv_get_Q(harminv_data d, int k) {
CHECK(k >= 0 && k < d->nfreqs, "argument out of range in harminv_get_Q");
return (TWOPI * fabs(harminv_get_freq(d, k)) / (2 * harminv_get_decay(d, k)));
}
void harminv_get_omega(cmplx *omega, harminv_data d, int k) {
CHECK(d->nfreqs >= 0, "haven't computed eigensolutions yet");
CHECK(k >= 0 && k < d->nfreqs, "argument out of range in harminv_get_omega");
*omega = (I * clog(d->u[k]));
return;
}
void harminv_get_amplitude(cmplx *amplitude, harminv_data d, int k) {
CHECK(k >= 0 && k < d->nfreqs, "argument out of range in harminv_get_amplitude");
if (!d->amps) d->amps = harminv_compute_amplitudes(d);
*amplitude = d->amps[k];
return;
}
double harminv_get_freq_error(harminv_data d, int k) {
CHECK(k >= 0 && k < d->nfreqs, "argument out of range in harminv_get_freq_error");
if (!d->errs) d->errs = harminv_compute_frequency_errors(d);
return d->errs[k];
}
/**************************************************************************/