-
Notifications
You must be signed in to change notification settings - Fork 0
/
text.py
87 lines (67 loc) · 2.42 KB
/
text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
""" from https://github.com/keithito/tacotron """
"""
Cleaners are transformations that run over the input text at both training and eval time.
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
1. "english_cleaners" for English text
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
the symbols in symbols.py to match your data).
"""
import re
from unidecode import unidecode
# Regular expression matching whitespace:
_whitespace_re = re.compile(r"\s+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
]
def expand_abbreviations(text):
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def convert_to_ascii(text):
return unidecode(text)
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text
def transliteration_cleaners(text):
"""Pipeline for non-English text that transliterates to ASCII."""
text = convert_to_ascii(text)
text = lowercase(text)
text = collapse_whitespace(text)
return text
def english_cleaners(text):
"""Pipeline for English text, including number and abbreviation expansion."""
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_abbreviations(text)
text = collapse_whitespace(text)
return text