-
Notifications
You must be signed in to change notification settings - Fork 0
/
darknet.py
340 lines (273 loc) · 11.3 KB
/
darknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from utils import *
# 共10647个边界框 输出b*10647*86
def get_test_input():
img = cv2.imread("dog-cycle-car.png")
img = cv2.resize(img, (416, 416))
# ::-1 是指bgr2rgb (2,0,1)是指h*w*channel--channel*h*w
img_ = img[:, :, ::-1].transpose((2, 0, 1))
img_ = img_[np.newaxis, :, :, :] / 255.0
img_ = torch.from_numpy(img_).float()
img_ = Variable(img_)
return img_
def parse_cfg(cfgfile):
"""
解析cfg文件,并将每个模块存为字典.块的属性及其值作为键值对储存.
"""
file = open(cfgfile, 'r')
lines = file.read().split('\n')
lines = [x for x in lines if len(x) > 0]
lines = [x for x in lines if x[0] != '#']
# 去掉空格
lines = [x.rstrip().lstrip() for x in lines]
block = {}
blocks = []
for line in lines:
if line[0] == "[":
# This marks the start of a new block
if len(block) != 0:
# If block is not empty, implies it is storing values of previous block.
blocks.append(block)
# add it the blocks list
block = {}
# re-init the block
block["type"] = line[1:-1].rstrip()
else:
key, value = line.split("=")
block[key.rstrip()] = value.lstrip()
blocks.append(block)
return blocks
def create_modules(blocks):
# 用于存储超参数 网络信息 第一个模块
# [net]
# Testing
# batch=1
# subdivisions=1
# Training
# batch = 16
# subdivisions = 1
# width = 416
# height = 416
net_info = blocks[0]
module_list = nn.ModuleList()
# 第一层的滤波器个数
prev_filters = 3
# 迭代过程中的每个层的滤波器参数列表
output_filters = []
for index, x in enumerate(blocks[1:]):
module = nn.Sequential()
# 检查block的type
# 创建一个新的module for the block
if x["type"] == "convolutional":
# Get the info about the layer
activation = x["activation"]
try:
batch_normalize = int(x["batch_normalize"])
bias = False
except:
batch_normalize = 0
bias = True
filters = int(x["filters"])
padding = int(x["pad"])
kernel_size = int(x["size"])
stride = int(x["stride"])
if padding:
pad = (kernel_size - 1) // 2
else:
pad = 0
# 添加卷积层
conv = nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias=bias)
# 卷积层的name
module.add_module("conv_{0}".format(index), conv)
# Add the Batch Norm Layer
if batch_normalize:
bn = nn.BatchNorm2d(filters)
module.add_module("batch_norm_{0}".format(index), bn)
# Check the activation.
# It is either Linear or a Leaky ReLU for YOLO
if activation == "leaky":
activn = nn.LeakyReLU(0.1, inplace=True)
module.add_module("leaky_{0}".format(index), activn)
# If it's an upsampling layer
# We use Bilinear2dUpsampling
elif x["type"] == "upsample":
# stride = int(x["stride"])
# upsample = nn.Upsample(scale_factor = 2, mode = "nearest")
# module.add_module("upsample_{}".format(index), upsample)
upsample = Upsample(scale_factor=int(x['stride']), mode='nearest')
module.add_module("upsample_{}".format(index), upsample)
elif x["type"] == "route":
x["layers"] = x["layers"].split(',')
# Start of a route
start = int(x["layers"][0])
# end, if there exists one.
# [route]
# layers = -4
# layers = -1, 61layers = -1, 61
try:
end = int(x["layers"][1])
except:
end = 0
# Positive anotation
if start > 0:
start = start - index
if end > 0:
end = end - index
route = EmptyLayer()
module.add_module("route_{0}".format(index), route)
if end < 0:
filters = output_filters[index + start] + output_filters[index + end]
else:
filters = output_filters[index + start]
# shortcut corresponds to skip connection
elif x["type"] == "shortcut":
shortcut = EmptyLayer()
module.add_module("shortcut_{}".format(index), shortcut)
# Yolo is the detection layer
elif x["type"] == "yolo":
mask = x["mask"].split(",")
mask = [int(x) for x in mask]
anchors = x["anchors"].split(",")
anchors = [int(a) for a in anchors]
anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
anchors = [anchors[i] for i in mask]
detection = DetectionLayer(anchors)
module.add_module("Detection_{}".format(index), detection)
module_list.append(module)
prev_filters = filters
output_filters.append(filters)
return net_info, module_list
class EmptyLayer(nn.Module):
def __init__(self):
super(EmptyLayer, self).__init__()
class DetectionLayer(nn.Module):
def __init__(self, anchors):
super(DetectionLayer, self).__init__()
self.anchors = anchors
class Upsample(nn.Module):
""" nn.Upsample 移除 定义Upsample类,forward用来实现上采样"""
def __init__(self, scale_factor, mode="blinear"):
super(Upsample, self).__init__()
self.scale_factor = scale_factor
self.mode = mode
def forward(self, x):
x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
return x
class Darknet(nn.Module):
def __init__(self, cfgfile):
super(Darknet, self).__init__()
self.blocks = parse_cfg(cfgfile)
self.net_info, self.module_list = create_modules(self.blocks)
def forward(self, x, CUDA):
modules = self.blocks[1:]
outputs = {}
# We cache the outputs for the route layer
# 一个指示器 write=0 则表示收集器尚未初始化
write = 0
for i, module in enumerate(modules):
module_type = (module["type"])
if module_type == "convolutional" or module_type == "upsample":
x = self.module_list[i](x)
elif module_type == "route":
layers = module["layers"]
layers = [int(a) for a in layers]
if (layers[0]) > 0:
layers[0] = layers[0] - i
if len(layers) == 1:
x = outputs[i + (layers[0])]
else:
if layers[1] > 0:
layers[1] = layers[1] - i
map1 = outputs[i + layers[0]]
map2 = outputs[i + layers[1]]
x = torch.cat((map1, map2), 1)
elif module_type == "shortcut":
from_ = int(module["from"])
x = outputs[i - 1] + outputs[i + from_]
elif module_type == 'yolo':
anchors = self.module_list[i][0].anchors
# 得到输入维度
inp_dim = int(self.net_info["height"])
num_classes = int(module["classes"])
x = x.data
# predict_transform 返回prediction[]
x = predict_transform(x, inp_dim, anchors, num_classes, CUDA)
if not write:
detections = x
write = 1
else:
detections = torch.cat((detections, x), 1)
outputs[i] = x
return detections
def load_weights(self, weightfile):
# Open the weights file
fp = open(weightfile, "rb")
# The first 5 values are header information
# 1. Major version number
# 2. Minor Version Number
# 3. Subversion number
# 4,5. Images seen by the network (during training)
header = np.fromfile(fp, dtype=np.int32, count=5)
self.header = torch.from_numpy(header)
self.seen = self.header[3]
weights = np.fromfile(fp, dtype=np.float32)
ptr = 0
for i in range(len(self.module_list)):
module_type = self.blocks[i + 1]["type"]
# If module_type is convolutional load weights
# Otherwise ignore.
if module_type == "convolutional":
model = self.module_list[i]
try:
batch_normalize = int(self.blocks[i + 1]["batch_normalize"])
except:
batch_normalize = 0
conv = model[0]
if batch_normalize:
bn = model[1]
# Get the number of weights of Batch Norm Layer
num_bn_biases = bn.bias.numel()
# 下载权重
bn_biases = torch.from_numpy(weights[ptr:ptr + num_bn_biases])
ptr += num_bn_biases
bn_weights = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
bn_running_mean = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
bn_running_var = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
# Cast the loaded weights into dims of model weights.
bn_biases = bn_biases.view_as(bn.bias.data)
bn_weights = bn_weights.view_as(bn.weight.data)
bn_running_mean = bn_running_mean.view_as(bn.running_mean)
bn_running_var = bn_running_var.view_as(bn.running_var)
# C opy the data to model
bn.bias.data.copy_(bn_biases)
bn.weight.data.copy_(bn_weights)
bn.running_mean.copy_(bn_running_mean)
bn.running_var.copy_(bn_running_var)
else:
# Number of biases
num_biases = conv.bias.numel()
# Load the weights
conv_biases = torch.from_numpy(weights[ptr: ptr + num_biases])
ptr = ptr + num_biases
# reshape the loaded weights according to the dims of the model weights
conv_biases = conv_biases.view_as(conv.bias.data)
# Finally copy the data
conv.bias.data.copy_(conv_biases)
# Let us load the weights for the Convolutional layers
num_weights = conv.weight.numel()
# Do the same as above for weights
conv_weights = torch.from_numpy(weights[ptr:ptr + num_weights])
ptr = ptr + num_weights
conv_weights = conv_weights.view_as(conv.weight.data)
conv.weight.data.copy_(conv_weights)
if __name__ == '__main':
blocks = parse_cfg('cfg/yolov3.cfg')
print(create_modules(blocks))