Skip to content
View Minami-su's full-sized avatar

Block or report Minami-su

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
Minami-su/README.md

Typing SVG

𝑨𝒃𝒐𝒖𝒕 𝑴𝒊𝒏𝒂𝒎𝒊-𝒔𝒖

𝑾𝒆𝒍𝒄𝒐𝒎𝒆 𝒕𝒐 𝑴𝒊𝒏𝒂𝒎𝒊-𝒔𝒖'𝒔 𝑮𝒊𝒕𝑯𝒖𝒃 𝒉𝒐𝒎𝒆.

𝑮𝒊𝒕𝑯𝒖𝒃: github.com/Minami-su

𝑯𝒖𝒈𝒈𝒊𝒏𝒈𝒇𝒂𝒄𝒆: huggingface.co/Minami-su

🌟 𝑴𝒚 𝑭𝒂𝒗𝒐𝒖𝒓𝒊𝒕𝒆

1.𝑰 𝒍𝒐𝒗𝒆 𝒕𝒆𝒄𝒉 𝒉𝒐𝒖𝒔𝒆

2.𝑰 𝒍𝒊𝒌𝒆 𝒔𝒕𝒆𝒊𝒏𝒔 𝒈𝒂𝒕𝒆

3.𝑰 𝒍𝒐𝒗𝒆 𝒃𝒍𝒂𝒄𝒌 𝒄𝒐𝒇𝒇𝒆𝒆

4.𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕𝒆𝒅 𝒊𝒏 𝒗𝒐𝒄𝒂𝒍𝒐𝒊𝒅

5.𝑳𝒊𝒌𝒆𝒔 𝒑𝒉𝒊𝒍𝒐𝒔𝒐𝒑𝒉𝒚, 𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚, 𝒑𝒔𝒚𝒄𝒉𝒐𝒍𝒐𝒈𝒚, 𝒄𝒐𝒈𝒏𝒊𝒕𝒊𝒗𝒆 𝒏𝒆𝒖𝒓𝒐𝒔𝒄𝒊𝒆𝒏𝒄𝒆, 𝒂𝒏𝒅 𝒘𝒂𝒏𝒕𝒔 𝒕𝒐 𝒄𝒓𝒆𝒂𝒕𝒆 𝒂𝒏 𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏𝒊𝒄 𝒍𝒊𝒇𝒆 𝒍𝒊𝒌𝒆 𝑬𝒏𝒆 𝒇𝒓𝒐𝒎 Kagerou_Project

🌟 𝑴𝒚 𝑺𝒌𝒊𝒍𝒍𝒔

  1. 𝑷𝒓𝒐𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒊𝒏 𝑷𝒚𝒕𝒉𝒐𝒏, 𝑳𝒊𝒏𝒖𝒙, 𝒂𝒏𝒅 𝑷𝒚𝑻𝒐𝒓𝒄𝒉.
  2. 𝑭𝒂𝒎𝒊𝒍𝒊𝒂𝒓 𝒘𝒊𝒕𝒉 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓, 𝑳𝑺𝑻𝑴, 𝑩𝑬𝑹𝑻, 𝑮𝑷𝑻 𝒎𝒐𝒅𝒆𝒍𝒔 𝒂𝒏𝒅 𝒄𝒂𝒑𝒂𝒃𝒍𝒆 𝒐𝒇 𝒊𝒏𝒏𝒐𝒗𝒂𝒕𝒊𝒏𝒈 𝒂𝒏𝒅 𝒊𝒎𝒑𝒓𝒐𝒗𝒊𝒏𝒈 𝒕𝒉𝒆𝒔𝒆 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝒔.
  3. 𝑷𝒐𝒔𝒔𝒆𝒔𝒔 𝒅𝒆𝒗𝒆𝒍𝒐𝒑𝒎𝒆𝒏𝒕 𝒆𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆 𝒊𝒏 𝒕𝒆𝒙𝒕 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏, 𝒕𝒆𝒙𝒕 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏, 𝒂𝒏𝒅 𝒅𝒊𝒂𝒍𝒐𝒈𝒖𝒆 𝒎𝒐𝒅𝒆𝒍𝒔.
  4. 𝑰𝒏 𝒕𝒉𝒆 𝒇𝒊𝒆𝒍𝒅 𝒐𝒇 𝒕𝒆𝒙𝒕 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏, 𝒎𝒂𝒔𝒕𝒆𝒓 𝒊𝒏𝒕𝒆𝒏𝒕 𝒓𝒆𝒄𝒐𝒈𝒏𝒊𝒕𝒊𝒐𝒏 𝒂𝒏𝒅 𝒔𝒍𝒐𝒕 𝒇𝒊𝒍𝒍𝒊𝒏𝒈, 𝒔𝒚𝒏𝒕𝒂𝒙-𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕 𝒕𝒓𝒆𝒆 𝒂𝒏𝒅 𝒑𝒂𝒓𝒕 𝒐𝒇 𝒔𝒑𝒆𝒆𝒄𝒉 𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄 𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒎𝒆𝒏𝒕 𝒖𝒏𝒅𝒆𝒓𝒔𝒕𝒂𝒏𝒅𝒊𝒏𝒈, 𝒂𝒏𝒅 𝒎𝒖𝒍𝒕𝒊𝒕𝒂𝒔𝒌 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈.
  5. 𝑭𝒐𝒓 𝒕𝒆𝒙𝒕 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏, 𝒘𝒆𝒍𝒍-𝒗𝒆𝒓𝒔𝒆𝒅 𝒊𝒏 𝒂𝒖𝒕𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒊𝒗𝒆 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈 𝒂𝒏𝒅 𝒂𝒖𝒕𝒐𝒆𝒏𝒄𝒐𝒅𝒆𝒓 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈.
  6. 𝑺𝒌𝒊𝒍𝒍𝒆𝒅 𝒊𝒏 𝒓𝒆𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒏𝒈 𝑨𝑨𝑨𝑰 𝑻𝒐𝒑 𝑪𝒐𝒏𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑷𝒂𝒑𝒆𝒓 𝒄𝒐𝒅𝒆𝒔 𝒊𝒏 𝒕𝒉𝒆 𝑵𝑳𝑷 𝒇𝒊𝒆𝒍𝒅.
  7. 𝑷𝒓𝒐𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒊𝒏 𝒕𝒉𝒆 𝒊𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑻𝒉𝒊𝒏𝒌𝒊𝒏𝒈 𝑻𝒓𝒆𝒆 (𝑻𝑶𝑻), 𝒇𝒊𝒏𝒆-𝒕𝒖𝒏𝒊𝒏𝒈 𝒐𝒇 𝒂𝒅𝒗𝒂𝒏𝒄𝒆𝒅 𝒐𝒑𝒆𝒏-𝒔𝒐𝒖𝒓𝒄𝒆 𝒎𝒐𝒅𝒆𝒍𝒔, 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒔𝒆𝒍𝒇-𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕 𝒄𝒐𝒎𝒎𝒂𝒏𝒅𝒔, 𝒂𝒏𝒅 𝒖𝒏𝒅𝒆𝒓𝒔𝒕𝒂𝒏𝒅𝒊𝒏𝒈 𝒕𝒉𝒆 𝒔𝒐𝒖𝒓𝒄𝒆 𝒄𝒐𝒅𝒆 𝒐𝒇 𝑺𝒕𝒂𝒏𝒇𝒐𝒓𝒅 𝑨𝑰 𝒕𝒐𝒘𝒏.
  8. 𝑬𝒙𝒑𝒆𝒓𝒕𝒊𝒔𝒆 𝒊𝒏 𝒊𝒎𝒑𝒓𝒐𝒗𝒊𝒏𝒈 𝒎𝒐𝒅𝒆𝒍 𝒊𝒏𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒄𝒂𝒑𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 𝑻𝑶𝑻 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝑩𝑭𝑺 𝒂𝒏𝒅 𝑫𝑭𝑺, 𝒂𝒏𝒅 𝒎𝒂𝒔𝒕𝒆𝒓𝒊𝒏𝒈 𝑳𝑳𝑴_𝒆𝒅𝒊𝒕 𝒇𝒐𝒓 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍 𝒆𝒅𝒊𝒕𝒊𝒏𝒈 𝒕𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆𝒔.
  9. 𝑯𝒂𝒗𝒆 𝒕𝒉𝒆 𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒕𝒐 𝒊𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕 𝒂𝒏𝒅 𝒇𝒊𝒏𝒆-𝒕𝒖𝒏𝒆 𝒕𝒉𝒆 𝒄𝒖𝒕𝒕𝒊𝒏𝒈-𝒆𝒅𝒈𝒆 𝒐𝒑𝒆𝒏-𝒔𝒐𝒖𝒓𝒄𝒆 𝒎𝒐𝒅𝒆𝒍𝒔 𝒊𝒏 𝒓𝒆𝒂𝒍-𝒕𝒊𝒎𝒆, 𝒔𝒖𝒄𝒉 𝒂𝒔 𝑮𝑳𝑴, 𝑳𝒍𝒂𝒎𝒂, 𝑩𝒂𝒊𝒄𝒉𝒖𝒂𝒏, 𝑸𝒘𝒆𝒏, 𝑴𝒊𝒔𝒕𝒓𝒂𝒍, 𝒀𝒊, 𝒆𝒕𝒄.
  10. 𝑼𝒏𝒅𝒆𝒓𝒔𝒕𝒂𝒏𝒅 8-𝒃𝒊𝒕 𝒂𝒏𝒅 4-𝒃𝒊𝒕 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈, 𝑸𝑳𝒐𝒓𝒂 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒇𝒐𝒓 𝒂𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒏𝒈 𝒂𝒏𝒅 𝒔𝒂𝒗𝒊𝒏𝒈 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒄𝒐𝒔𝒕𝒔.
  11. 𝑷𝒓𝒐𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒊𝒏 𝑫𝒆𝒆𝒑𝑺𝒑𝒆𝒆𝒅 𝒎𝒖𝒍𝒕𝒊-𝒄𝒂𝒓𝒅 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒇𝒐𝒓 𝒂𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒏𝒈 𝒕𝒉𝒆 𝒇𝒊𝒏𝒆-𝒕𝒖𝒏𝒊𝒏𝒈 𝒂𝒏𝒅 𝒑𝒓𝒆-𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒇 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍𝒔.
  12. 𝑭𝒂𝒎𝒊𝒍𝒊𝒂𝒓 𝒘𝒊𝒕𝒉 𝒗𝒆𝒄𝒕𝒐𝒓 𝒅𝒂𝒕𝒂𝒃𝒂𝒔𝒆𝒔 𝒂𝒏𝒅 𝒕𝒉𝒆𝒊𝒓 𝒄𝒐𝒎𝒃𝒊𝒏𝒂𝒕𝒊𝒐𝒏 𝒘𝒊𝒕𝒉 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒊𝒅𝒆 𝒆𝒙𝒕𝒓𝒂 𝒌𝒏𝒐𝒘𝒍𝒆𝒅𝒈𝒆.
  13. 𝑲𝒏𝒐𝒘𝒍𝒆𝒅𝒈𝒆𝒂𝒃𝒍𝒆 𝒊𝒏 𝑨𝑰 𝒔𝒑𝒆𝒆𝒄𝒉 𝒔𝒚𝒏𝒕𝒉𝒆𝒔𝒊𝒔 𝒂𝒏𝒅 𝒄𝒐𝒍𝒍𝒆𝒄𝒕𝒊𝒏𝒈 𝒕𝒆𝒙𝒕-𝒕𝒐-𝒔𝒑𝒆𝒆𝒄𝒉 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒅𝒂𝒕𝒂 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝑽𝑰𝑻𝑺.
  14. 𝑬𝒙𝒑𝒆𝒓𝒕𝒊𝒔𝒆 𝒊𝒏 𝒄𝒐𝒏𝒕𝒆𝒙𝒕-𝒃𝒂𝒔𝒆𝒅 𝒅𝒊𝒂𝒍𝒐𝒈𝒖𝒆 (𝑴𝑴𝑰 𝒄𝒐𝒏𝒄𝒆𝒑𝒕), 𝒑𝒓𝒐𝒎𝒑𝒕 𝒆𝒏𝒈𝒊𝒏𝒆𝒆𝒓𝒊𝒏𝒈.
  15. 𝑴𝒂𝒔𝒕𝒆𝒓 𝒊𝒏 𝑻𝑮𝑰, 𝑽𝑳𝑳𝑴, 𝑻𝒆𝒏𝒔𝒐𝒓𝑹𝑻𝑳𝑳𝑴 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒍𝒂𝒕𝒆𝒔𝒕 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍 𝒊𝒏𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒂𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒎𝒆𝒕𝒉𝒐𝒅𝒔.
  16. 𝑷𝒐𝒔𝒔𝒆𝒔𝒔𝒆𝒔 𝒄𝒂𝒑𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔 𝒕𝒐 𝒆𝒎𝒑𝒍𝒐𝒚 𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒊𝒆𝒔 𝒔𝒖𝒄𝒉 𝒂𝒔 𝑺𝑨𝑫𝑻𝒂𝒍𝒌𝒆𝒓, 𝑮𝒇𝒑𝒈𝒂𝒏, 𝑺𝒆𝒈𝒎𝒆𝒏𝒕 𝑨𝒏𝒚𝒕𝒉𝒊𝒏𝒈, 𝑾𝒂𝒗2𝑳𝒊𝒑, 𝒂𝒏𝒅 𝑺𝒕𝒂𝒃𝒍𝒆-𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 𝒇𝒐𝒓 𝒅𝒊𝒈𝒊𝒕𝒂𝒍 𝒉𝒖𝒎𝒂𝒏 𝒅𝒆𝒗𝒆𝒍𝒐𝒑𝒎𝒆𝒏𝒕.
  17. 𝑷𝒓𝒐𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒊𝒏 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒎𝒖𝒍𝒕𝒊𝒎𝒐𝒅𝒂𝒍 𝒗𝒊𝒔𝒖𝒂𝒍 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍𝒔 𝒔𝒖𝒄𝒉 𝒂𝒔 𝑳𝒍𝒂𝒗𝒂 𝒂𝒏𝒅 𝑴𝒊𝒏𝒊𝑮𝑷𝑻4.
  18. 𝑬𝒙𝒑𝒆𝒓𝒕𝒊𝒔𝒆 𝒊𝒏 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍 𝒐𝒏𝒍𝒊𝒏𝒆 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝒔𝒆𝒂𝒓𝒄𝒉 𝒆𝒏𝒈𝒊𝒏𝒆𝒔 𝒂𝒏𝒅 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 𝒅𝒂𝒕𝒂𝒃𝒂𝒔𝒆𝒔.
  19. 𝑪𝒂𝒑𝒂𝒃𝒍𝒆 𝒐𝒇 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒏𝒈 𝒉𝒊𝒈𝒉-𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒇𝒊𝒏𝒆-𝒕𝒖𝒏𝒊𝒏𝒈 𝒅𝒂𝒕𝒂 𝒊𝒏 𝒗𝒂𝒓𝒊𝒐𝒖𝒔 𝒇𝒊𝒆𝒍𝒅𝒔 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒎𝒆𝒕𝒉𝒐𝒅𝒔 𝒔𝒖𝒄𝒉 𝒂𝒔 𝒔𝒆𝒍𝒇-𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕, 𝒆𝒗𝒐𝒍-𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕, 𝒎𝒖𝒍𝒕𝒊-𝒕𝒖𝒓𝒏 𝒅𝒊𝒂𝒍𝒐𝒈𝒖𝒆 𝒔𝒆𝒍𝒇-𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏. 𝑪𝒂𝒏 𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕 𝒕𝒉𝒆 𝒏𝒆𝒄𝒆𝒔𝒔𝒂𝒓𝒚 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒅𝒂𝒕𝒂 𝒇𝒐𝒓 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍𝒔 𝒊𝒏 𝒗𝒂𝒓𝒊𝒐𝒖𝒔 𝒇𝒊𝒆𝒍𝒅𝒔 𝒂𝒏𝒅 𝒕𝒓𝒂𝒊𝒏 𝒍𝒂𝒓𝒈𝒆 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒎𝒐𝒅𝒆𝒍𝒔.
  20. 𝑷𝒓𝒐𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒊𝒏 𝒂𝒅𝒗𝒂𝒏𝒄𝒆𝒅 𝑸𝒖𝑰𝑷 # 2𝒃𝒊𝒕 𝒒𝒖𝒂𝒏𝒕𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒎𝒆𝒕𝒉𝒐𝒅, 𝒆𝒏𝒂𝒃𝒍𝒊𝒏𝒈 𝒊𝒏𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒐𝒇 70𝑩 𝒎𝒐𝒅𝒆𝒍𝒔 𝒘𝒊𝒕𝒉 𝒏𝒐 𝒍𝒐𝒔𝒔 𝒐𝒏 𝒂 𝒔𝒊𝒏𝒈𝒍𝒆 24𝑮 𝑮𝑷𝑼.
  21. 𝑪𝒐𝒎𝒑𝒓𝒆𝒉𝒆𝒏𝒔𝒊𝒗𝒆 𝒖𝒏𝒅𝒆𝒓𝒔𝒕𝒂𝒏𝒅𝒊𝒏𝒈 𝒐𝒇 𝒕𝒉𝒆 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒑𝒓𝒐𝒄𝒆𝒔𝒔 𝒐𝒇 𝒕𝒉𝒆 𝑫𝑷𝑶 𝒑𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈 𝑳𝑳𝑴 𝒎𝒐𝒅𝒆𝒍, 𝒊𝒏𝒄𝒍𝒖𝒅𝒊𝒏𝒈 𝑫𝑷𝑶 𝒅𝒂𝒕𝒂 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏, 𝑫𝑷𝑶 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒇 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕 𝒂𝒓𝒄𝒉𝒊𝒕𝒆𝒄𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍𝒔, 𝒂𝒏𝒅 𝒑𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆 𝒕𝒆𝒔𝒕𝒊𝒏𝒈.
  22. 𝑨𝒃𝒍𝒆 𝒕𝒐 𝒓𝒆𝒔𝒆𝒂𝒓𝒄𝒉 𝒕𝒉𝒆 𝒍𝒂𝒕𝒆𝒔𝒕 𝒂𝒅𝒗𝒂𝒏𝒄𝒆𝒎𝒆𝒏𝒕𝒔, 𝒂𝒓𝒄𝒉𝒊𝒕𝒆𝒄𝒕𝒖𝒓𝒆𝒔, 𝒂𝒏𝒅 𝒕𝒚𝒑𝒊𝒄𝒂𝒍 𝒆𝒙𝒂𝒎𝒑𝒍𝒆𝒔 𝒊𝒏 𝒂𝒄𝒂𝒅𝒆𝒎𝒊𝒂 𝒂𝒏𝒅 𝒊𝒏𝒅𝒖𝒔𝒕𝒓𝒚 𝒓𝒆𝒍𝒂𝒕𝒆𝒅 𝒕𝒐 𝒕𝒉𝒆 𝒋𝒐𝒃 𝒂𝒏𝒅 𝒕𝒆𝒔𝒕 𝒕𝒉𝒆𝒎 𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍𝒍𝒚.
  23. 𝑨𝒃𝒊𝒍𝒊𝒕𝒚 𝒕𝒐 𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕𝒍𝒚 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆 𝒕𝒉𝒆 𝒇𝒖𝒍𝒍 𝒑𝒓𝒐𝒄𝒆𝒔𝒔 𝒐𝒇 𝒎𝒐𝒅𝒆𝒍 𝒅𝒆𝒗𝒆𝒍𝒐𝒑𝒎𝒆𝒏𝒕: 𝒅𝒂𝒕𝒂 𝒑𝒓𝒆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈, 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒗𝒆 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈, 𝒓𝒆𝒔𝒖𝒍𝒕 𝒕𝒆𝒔𝒕𝒊𝒏𝒈, 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒏𝒈 𝒇𝒊𝒍𝒆𝒔 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒇𝒐𝒓 𝒆𝒏𝒈𝒊𝒏𝒆𝒆𝒓𝒊𝒏𝒈 𝒔𝒆𝒓𝒗𝒊𝒄𝒆𝒔, 𝒂𝒏𝒅 𝒃𝒖𝒊𝒍𝒅𝒊𝒏𝒈 𝒐𝒏𝒍𝒊𝒏𝒆 𝒆𝒏𝒈𝒊𝒏𝒆𝒆𝒓𝒊𝒏𝒈 𝒔𝒆𝒓𝒗𝒊𝒄𝒆 𝒄𝒐𝒅𝒆.
  24. 𝑰𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒆𝒅 𝒂 5 𝒎𝒊𝒍𝒍𝒊𝒐𝒏 𝒕𝒐𝒌𝒆𝒏 𝒐𝒖𝒕𝒑𝒖𝒕 𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑺𝒊𝒏𝒌.
  25. 𝑰𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒆𝒅 𝒂 100𝒌 𝒕𝒐𝒌𝒆𝒏 𝒘𝒊𝒏𝒅𝒐𝒘 𝒍𝒆𝒏𝒈𝒕𝒉 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝒔𝒆𝒍𝒇-𝒆𝒙𝒕𝒆𝒏𝒅 𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚.
  26. 𝑫𝒆𝒗𝒆𝒍𝒐𝒑𝒆𝒅 𝒔𝒖𝒑𝒆𝒓-𝒄𝒐𝒏𝒄𝒖𝒓𝒓𝒆𝒏𝒄𝒚 𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚 𝒇𝒐𝒓 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍𝒔, 𝒂𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒂 𝒔𝒊𝒏𝒈𝒍𝒆 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍 𝒕𝒐 𝒔𝒊𝒎𝒖𝒍𝒕𝒂𝒏𝒆𝒐𝒖𝒔𝒍𝒚 𝒑𝒓𝒐𝒄𝒆𝒔𝒔 𝒕𝒉𝒐𝒖𝒔𝒂𝒏𝒅𝒔 𝒕𝒐 𝒕𝒆𝒏𝒔 𝒐𝒇 𝒕𝒉𝒐𝒖𝒔𝒂𝒏𝒅𝒔 𝒐𝒇 𝒑𝒊𝒆𝒄𝒆𝒔 𝒐𝒇 𝒊𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏.
  27. 𝑨𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒆𝒅 𝒕𝒉𝒆 𝒔𝒆𝒍𝒇-𝒅𝒂𝒕𝒂 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚, 𝑺𝒆𝒍𝒇_𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕, 𝒃𝒚 40 𝒕𝒊𝒎𝒆𝒔 𝒖𝒔𝒊𝒏𝒈 𝒔𝒖𝒑𝒆𝒓-𝒄𝒐𝒏𝒄𝒖𝒓𝒓𝒆𝒏𝒄𝒚 𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚.
  28. 𝑪𝒂𝒑𝒂𝒃𝒍𝒆 𝒐𝒇 𝒔𝒆𝒂𝒎𝒍𝒆𝒔𝒔𝒍𝒚 𝒔𝒘𝒊𝒕𝒄𝒉𝒊𝒏𝒈 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 20 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕 𝑳𝒐𝒓𝒂 𝒍𝒂𝒓𝒈𝒆 𝒎𝒐𝒅𝒆𝒍𝒔, 𝒎𝒆𝒂𝒏𝒊𝒏𝒈 𝒂 𝒔𝒊𝒏𝒈𝒍𝒆 𝒎𝒐𝒅𝒆𝒍 𝒄𝒂𝒏 𝒔𝒘𝒊𝒕𝒄𝒉 𝒕𝒐 𝒂 𝒑𝒓𝒐𝒑𝒓𝒊𝒆𝒕𝒂𝒓𝒚 𝒎𝒐𝒅𝒆𝒍 𝒊𝒏 𝒂𝒏𝒚 𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒇𝒊𝒆𝒍𝒅 𝒖𝒔𝒊𝒏𝒈 𝑳𝒐𝒓𝒂.
  29. 𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒆𝒅 𝒎𝒐𝒅𝒆𝒍 𝒔𝒄𝒐𝒓𝒊𝒏𝒈 𝒖𝒔𝒊𝒏𝒈 𝑳𝑴-𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏-𝒉𝒂𝒓𝒏𝒆𝒔𝒔 (𝑯𝒖𝒈𝒈𝒊𝒏𝒈𝒇𝒂𝒄𝒆 𝒍𝒆𝒂𝒅𝒆𝒓𝒃𝒐𝒂𝒓𝒅) 𝒂𝒏𝒅 𝑴𝑻-𝒃𝒆𝒏𝒄𝒉.
  30. 𝑻𝒆𝒔𝒕𝒆𝒅 𝒎𝒐𝒅𝒆𝒍 𝒄𝒐𝒏𝒕𝒆𝒙𝒕 𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒖𝒔𝒊𝒏𝒈 𝑵𝒆𝒆𝒅𝒍𝒆𝑰𝒏𝑨𝑯𝒂𝒚𝒔𝒕𝒂𝒄𝒌.
  31. 𝑨𝒃𝒍𝒆 𝒕𝒐 𝒈𝒖𝒊𝒅𝒆 𝒏𝒆𝒘 𝒄𝒐𝒍𝒍𝒆𝒂𝒈𝒖𝒆𝒔 𝒊𝒏 𝒒𝒖𝒊𝒄𝒌𝒍𝒚 𝒂𝒄𝒄𝒍𝒊𝒎𝒂𝒕𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒆𝒊𝒓 𝒓𝒐𝒍𝒆𝒔.

Popular repositories Loading

  1. character_AI_open character_AI_open Public

    Generate multi-round conversation roleplay data based on self-instruct and evol-instruct.

    Python 108 12

  2. nBAT nBAT Public

    BiLSTM-Attention Transformer for non-coding RNA Coding Potential Prediction(Code)

    Python 5

  3. Minami-su Minami-su Public

    3

  4. quip-sharp-qwen quip-sharp-qwen Public

    Forked from Cornell-RelaxML/quip-sharp

    Python 1

  5. attention_sinks_autogptq attention_sinks_autogptq Public

    Forked from tomaarsen/attention_sinks

    attention_sinks can use autogptq,and support all model at autogptq,like qwen baichuan,etc

    Python 1

  6. Chinese-omni Chinese-omni Public

    1