This is a public repository that aims to automate the high-throughput organic crystals prediction by integrating various existing tools such as PyXtal, pyocse, RDKit, AmberTools, and CHARMM.
git clone this repository and then go to the root directory
conda install -c conda-forge mamba
mamba env create -n htocsp
conda activate htocsp
If you want to update the existing ost enviroment
conda activate htocsp
mamba env update --file environment.yml
One can request a free academic version of CHARMM and then install it via the following commands. Note, make sure you compile charmm with the simplest option with qchem, openmm, quantum and colfft.
$ ./configure --without-mpi --without-qchem --without-openmm --without-quantum --without-colfft -p ~/CHARMM
$ make -j 8
$ make install
After a few minutes, you should see the following messages
[ 0%] Built target charmm_c
[ 99%] Built target charmm_fortran
[100%] Built target charmm_cxx
[100%] Built target charmm
Install the project...
-- Install configuration: "Release"
Installing into $HOME/CHARMM
-- Up-to-date: $HOME/CHARMM/bin/charmm
Then add the path of charmm
executable to your .bashrc
file and source it.
export PATH=$HOME/CHARMM/bin:$PATH
To check if the installation is successful, go to /HTOCSP/tests/CHARMM
and run the example:
$ charmm < charmm.in
NORMAL TERMINATION BY NORMAL STOP
MOST SEVERE WARNING WAS AT LEVEL 1
$$$$$ JOB ACCOUNTING INFORMATION $$$$$
ELAPSED TIME: 2.44 SECONDS
CPU TIME: 2.40 SECONDS
You should see quickly see the output of NORMAL TERMINATION
.
After the environment is correctly setup, you can run the follow script directly from your terminal. This will quickly run 2 generations of sampling with a total of 8 structures.
from pyxtal.optimize import WFS
# Sampling
go = WFS(smiles="CC(=O)OC1=CC=CC=C1C(=O)O",
wdir="apirin-quick",
sg=[14],
tag = 'aspirin',
N_gen = 2,
N_pop = 4,
N_cpu = 1,
ff_style = 'gaff',
)
go.run()
The output should look like the following
Method : Stochastic Width First Sampling
Generation: 2
Population: 4
Fraction : 0.60 0.40 0.00
Generation 0 starts
0 83 18.91 3.89 12.92 107.6 1 0 0.96 0.95 0.73 19.9 68.8 0.5 -111.4 -4.9 10.1 0 -85.745 Random
1 83 9.07 17.01 5.62 80.4 1 0 0.77 0.37 0.84 81.8 16.1 -56.3 -128.7 -4.1 -157.3 0 -87.927 Random
2 82 5.69 12.06 12.31 79.8 1 0 0.42 0.29 0.10 -5.6 -21.3 126.5 -65.3 -2.6 152.8 0 -88.225 Random
3 81 21.82 8.30 7.59 68.8 1 0 0.90 0.87 0.26 -102.3 -21.1 -147.9 90.1 0.0 -180.0 0 2500.000 Random
Generation 0 finishes: 4 strucs
0 82 5.69 12.06 12.31 79.8 1 0 0.42 0.29 0.10 -5.6 -21.3 126.5 -65.3 -2.6 152.8 0 -88.225 Random Top
0 83 9.07 17.01 5.62 80.4 1 0 0.77 0.37 0.84 81.8 16.1 -56.3 -128.7 -4.1 -157.3 0 -87.927 Random Top
0 83 18.91 3.89 12.92 107.6 1 0 0.96 0.95 0.73 19.9 68.8 0.5 -111.4 -4.9 10.1 0 -85.745 Random Top
Gen 0 time usage: 47.7[Calc] 0.0[Proc]
Generation 1 starts
0 83 13.54 10.84 7.54 50.4 1 0 0.40 0.97 0.19 86.8 14.8 -105.8 -90.0 -0.0 180.0 0 2500.000 Random
1 82 14.33 8.12 7.21 98.3 1 0 0.51 0.06 0.27 92.9 16.8 1.7 155.8 9.4 160.8 0 -82.825 Random
2 83 13.30 5.61 11.48 96.0 1 0 0.99 0.05 0.73 -17.7 34.3 132.6 -120.7 -16.8 18.5 0 -89.025 Mutation
3 81 18.70 6.76 16.85 112.9 1 0 0.54 0.84 0.65 -61.9 62.4 -1.3 85.8 1.1 3.2 0 -77.307 Random
Generation 1 finishes: 8 strucs
1 83 13.30 5.61 11.48 96.0 1 0 0.99 0.05 0.73 -17.7 34.3 132.6 -120.7 -16.8 18.5 0 -89.025 Mutation Top
1 82 14.33 8.12 7.21 98.3 1 0 0.51 0.06 0.27 92.9 16.8 1.7 155.8 9.4 160.8 0 -82.825 Random Top
1 81 18.70 6.76 16.85 112.9 1 0 0.54 0.84 0.65 -61.9 62.4 -1.3 85.8 1.1 3.2 0 -77.307 Random Top
Gen 1 time usage: 44.2[Calc] 0.0[Proc]
In this example, the structure ended with 2500.000
means an invalid structure. Make sure you don't see all structures ends up with 2500.000
.
Please ref to the examples folder to run more productive examples.
Zhu Q, Hattori S. (2024). Automated High-throughput Organic Crystal Structure Prediction via Population-based Sampling
@misc{zhu2024-htocsp,
title={Automated High-throughput Organic Crystal Structure Prediction via Population-based Sampling},
author={Qiang Zhu and Shinnosuke Hattori},
year={2024},
eprint={2408.08843},
archivePrefix={arXiv},
primaryClass={cond-mat.mtrl-sci},
doi={https://doi.org/10.48550/arXiv.2408.08843},
url={https://arxiv.org/abs/2408.08843},
}
- Qiang Zhu ([email protected])
- Shinnosuke Hattori ([email protected])