-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
342 lines (283 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#!/usr/bin/env python
import builtins
import math
import os
import random
import shutil
import time
import warnings
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torch.utils.tensorboard import SummaryWriter
from datasets import create_dataset
from models import create_model
from option import parser
args = parser.parse_args()
def main():
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn(
"You have chosen to seed training. "
"This will turn on the CUDNN deterministic setting, "
"which can slow down your training considerably! "
"You may see unexpected behavior when restarting "
"from checkpoints."
)
if args.gpu is not None:
warnings.warn(
"You have chosen a specific GPU. This will completely "
"disable data parallelism."
)
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
# suppress printing if not master
if args.multiprocessing_distributed and args.gpu != 0 and not args.debug:
def print_pass(*args):
pass
builtins.print = print_pass
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
# create model
print("=> creating model '{}'".format(args.model))
model = create_model(args)
model.print_networks(verbose=False)
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu]
)
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
# comment out the following line for debugging
raise NotImplementedError("Only DistributedDataParallel is supported.")
else:
# AllGather implementation (batch shuffle, queue update, etc.) in
# this code only supports DistributedDataParallel.
raise NotImplementedError("Only DistributedDataParallel is supported.")
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = "cuda:{}".format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["state_dict"], strict=False)
print(
"=> loaded checkpoint '{}' (epoch {})".format(
args.resume, checkpoint["epoch"]
)
)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
train_dataset = create_dataset(args, training=True)
eval_dataset = create_dataset(args, training=False)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
num_workers=args.workers,
pin_memory=True,
sampler=train_sampler,
drop_last=True,
)
eval_loader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=1,
shuffle=False,
num_workers=1,
pin_memory=True,
drop_last=False,
)
if not args.multiprocessing_distributed or (
args.multiprocessing_distributed and args.rank % ngpus_per_node == 0
):
writer = SummaryWriter(log_dir="runs/" + args.name)
else:
writer = None
for epoch in range(args.start_epoch, args.epochs + 1):
if args.distributed:
train_sampler.set_epoch(epoch)
# train for one epoch
train(train_loader, model, epoch, writer, args)
if epoch % args.test_freq == 0:
eval(eval_loader, model, epoch, writer, args)
torch.cuda.empty_cache()
if not args.multiprocessing_distributed or (
args.multiprocessing_distributed and args.rank % ngpus_per_node == 0
):
checkpoint_dir = os.path.join(args.checkpoint, args.name)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
save_checkpoint(
{
"epoch": epoch + 1,
"model": args.model,
"state_dict": model.state_dict(),
},
is_best=False,
filename=os.path.join(
checkpoint_dir, "checkpoint_{:04d}.pth.tar".format(epoch)
),
)
def train(train_loader, model, epoch, writer, args):
batch_time = AverageMeter("Time", ":6.3f")
data_time = AverageMeter("Data", ":6.3f")
lr = AverageMeter("LR", ":.4e")
losses = AverageMeter("Loss", ":.4e")
progress = ProgressMeter(
[batch_time, data_time, lr, losses], prefix="Training: [{:03d}]".format(epoch)
)
# switch to train mode
model.train()
end = time.time()
for i, batch in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
global_step = i + epoch * len(train_loader)
# unpack data and calculate loss functions
model.module.set_input(batch)
loss, batch_size = model.module.optimize_parameters(global_step)
losses.update(loss.item(), batch_size)
lr.update(model.module.get_lr(), batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# Avoid Muliple Log
if not args.multiprocessing_distributed or (
args.multiprocessing_distributed
and args.rank % torch.cuda.device_count() == 0
):
if global_step % args.print_freq == 0:
progress.display(global_step)
writer.add_scalar("lr", model.module.get_lr(), global_step)
writer.add_scalar("epoch", epoch, global_step)
for k, v in model.module.get_current_losses().items():
writer.add_scalar("loss/%s" % k, v, global_step)
writer.add_scalar("final_loss", loss, global_step)
if global_step % args.display_freq == 0:
for k, v in model.module.get_current_visuals().items():
writer.add_images("visual_%s" % k, v, global_step)
# Epoch Based Learing Rate Optimizer
model.module.scheduler.step()
def eval(test_loader, model, epoch, writer, args):
batch_time = AverageMeter("Time", ":6.3f")
avg_acc = AverageMeter("ACC", ":6.3f")
progress = ProgressMeter([batch_time, avg_acc], prefix="Evaling: ")
model.eval()
end = time.time()
for i, batch in enumerate(test_loader):
model.module.set_input(batch)
with torch.no_grad():
acc = model.module.eval()
avg_acc.update(acc)
batch_time.update(time.time() - end)
end = time.time()
if not args.multiprocessing_distributed or (
args.multiprocessing_distributed and args.rank % torch.cuda.device_count() == 0
):
progress.display(epoch)
writer.add_scalar("ACC", avg_acc.val, epoch)
def save_checkpoint(state, is_best, filename="checkpoint.pth.tar"):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, "model_best.pth.tar")
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, meters, prefix=""):
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + "[{:07d}]".format(batch)]
entries += [str(meter) for meter in self.meters]
print("\t".join(entries))
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
lr *= 0.5 * (1.0 + math.cos(math.pi * epoch / args.epochs))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.0
for param_group in optimizer.param_groups:
param_group["lr"] = lr
if __name__ == "__main__":
main()