-
Notifications
You must be signed in to change notification settings - Fork 0
/
score.py
165 lines (136 loc) · 5.74 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# os.environ["FLAGS_fraction_of_gpu_memory_to_use"] = "0.3"
import sys
sys.path.insert(0, ".")
import argparse
import functools
import paddle.fluid as fluid
import reader
from utils import *
import json
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import tempfile
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 32, "Minibatch size.")
add_arg('data_dir', str, '', "The data root path.")
add_arg('test_list', str, '', "The testing data lists.")
add_arg('model_dir', str, '', "The model path.")
add_arg('nms_threshold', float, 0.45, "NMS threshold.")
add_arg('ap_version', str, 'cocoMAP', "cocoMAP.")
add_arg('mean_value_B', float, 127.5, "Mean value for B channel which will be subtracted.") #123.68
add_arg('mean_value_G', float, 127.5, "Mean value for G channel which will be subtracted.") #116.78
add_arg('mean_value_R', float, 127.5, "Mean value for R channel which will be subtracted.") #103.94
def use_coco_api_compute_mAP(data_args, test_list, num_classes, test_reader, exe, infer_program,
feeded_var_names, feeder, target_var, batch_size):
cocoGt = COCO(os.path.join(data_args.data_dir, test_list))
json_category_id_to_contiguous_id = {
v: i + 1
for i, v in enumerate(cocoGt.getCatIds())
}
contiguous_category_id_to_json_id = {
v: k
for k, v in json_category_id_to_contiguous_id.items()
}
dts_res = []
executor = fluid.Executor(fluid.CUDAPlace(0))
test_program = fluid.Program()
with fluid.program_guard(test_program):
boxes = fluid.layers.data(
name='boxes', shape=[-1, -1, 4], dtype='float32')
scores = fluid.layers.data(
name='scores', shape=[-1, -1, num_classes], dtype='float32')
pred_result = fluid.layers.multiclass_nms(
bboxes=boxes,
scores=scores,
score_threshold=0.01,
nms_top_k=-1,
nms_threshold=0.45,
keep_top_k=-1,
normalized=False)
executor.run(fluid.default_startup_program())
for batch_id, data in enumerate(test_reader()):
boxes_np, socres_np = exe.run(program=infer_program,
feed={feeded_var_names[0]: feeder.feed(data)['image']},
fetch_list=target_var)
nms_out = executor.run(
program=test_program,
feed={
'boxes': boxes_np,
'scores': socres_np
},
fetch_list=[pred_result], return_numpy=False)
if batch_id % 20 == 0:
print("Batch {0}".format(batch_id))
dts_res += get_batch_dt_res(nms_out, data, contiguous_category_id_to_json_id, batch_size)
_, tmp_file = tempfile.mkstemp()
with open(tmp_file, 'w') as outfile:
json.dump(dts_res, outfile)
print("start evaluate using coco api")
cocoDt = cocoGt.loadRes(tmp_file)
cocoEval = COCOeval(cocoGt, cocoDt, "bbox")
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
mAP = cocoEval.stats[0]
return mAP
def compute_score(model_dir, data_dir, test_list='annotations/instances_val2017.json', batch_size=32, height=300, width=300, num_classes=81,
mean_value=[127.5, 127.5, 127.5]):
"""
compute score, mAP, flops of a model
Args:
model_dir (string): directory of model
data_dir (string): directory of coco dataset, like '/your/path/to/coco', '/work/datasets/coco'
Returns:
tuple: score, mAP, flops.
"""
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
[infer_program, feeded_var_names, target_var] = fluid.io.load_inference_model(dirname=model_dir, executor=exe)
image_shape = [3, height, width]
data_args = reader.Settings(
dataset='coco2017',
data_dir=data_dir,
resize_h=height,
resize_w=width,
mean_value=mean_value,
apply_distort=False,
apply_expand=False,
ap_version='cocoMAP')
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
gt_box = fluid.layers.data(
name='gt_box', shape=[4], dtype='float32', lod_level=1)
gt_label = fluid.layers.data(
name='gt_label', shape=[1], dtype='int32', lod_level=1)
gt_iscrowd = fluid.layers.data(
name='gt_iscrowd', shape=[1], dtype='int32', lod_level=1)
gt_image_info = fluid.layers.data(
name='gt_image_id', shape=[3], dtype='int32')
test_reader = reader.test(data_args, test_list, batch_size)
feeder = fluid.DataFeeder(
place=place,
feed_list=[image, gt_box, gt_label, gt_iscrowd, gt_image_info])
mAP = use_coco_api_compute_mAP(data_args, test_list, num_classes, test_reader, exe, infer_program,
feeded_var_names, feeder, target_var, batch_size)
total_flops_params, is_quantize = summary(infer_program)
MAdds = np.sum(total_flops_params['flops']) / 2000000.0
if is_quantize:
MAdds /= 2.0
print('mAP:', mAP)
print('MAdds:', MAdds)
if MAdds < 160.0:
MAdds = 160.0
if MAdds > 1300.0:
score = 0.0
else:
score = mAP * 100 - (5.1249 * np.log(MAdds) - 14.499)
print('score:', score)
return score, mAP, MAdds
if __name__ == '__main__':
args = parser.parse_args()
print_arguments(args)
score, mAP, flops = compute_score(args.model_dir, args.data_dir, batch_size=args.batch_size)