forked from giuseppericcio/HealthcareSummarizationMIMIC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Home.py
707 lines (613 loc) · 25.1 KB
/
Home.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
import json
import pandas as pd
import streamlit as st
import plotly.express as px
from PIL import Image
from pymongo import MongoClient
from py2neo import Graph, Node
from streamlit_agraph import agraph, Node, Edge, Config
from faker import Faker
from datetime import datetime
# ---- READ LOGO ----
image = Image.open("img/logo_blu.png")
# ---- SETTINGS PAGE ----
st.set_page_config(page_title="Dashboard Patient - Healthcare Summarization", page_icon="🩺", layout="wide")
# ---- RETRIEVE MONGO STRING
with open("secrets.json") as f:
secrets = json.load(f)
mongo_string = secrets["mongo_string"]
# ---- CONFIGURAZIONE PER AGRAPH
config = Config(width=1000,
height=600,
directed=True,
physics={"barnesHut": {"gravitationalConstant": -5000, "centralGravity": 0.3, "springLength": 95, "springConstant": 0.04, "damping": 0.09, "avoidOverlap": 0.1}},
hierarchical=False
)
# ---- CONNESSIONE A MONGODB ----
st.cache_data()
def get_summaries():
## CONNESSIONE A MONGO ATLAS
client = MongoClient(mongo_string)
db = client.noteevents
summaries = db.summaries_db
summaries_df = pd.DataFrame(list(summaries.find()))
return summaries_df
st.cache_data()
def get_noteevents(paziente_id):
## CONNESSIONE A MONGO ATLAS
client = MongoClient(mongo_string)
db = client.noteevents
noteevents = db.noteevents_db
noteevents_df = pd.DataFrame(list(noteevents.find({'SUBJECT_ID': paziente_id})))
return noteevents_df
summaries_df = get_summaries()
# ---- CONNESSIONE A NEO4J ----
st.cache_data()
def connect_Neo4J():
graph = Graph("bolt://localhost:7687", user="neo4j", password="bigdata2023")
graph_re = Graph("bolt://localhost:7687", name="relationextraction", user="neo4j", password="bigdata2023")
return graph,graph_re
graph,graph_re = connect_Neo4J()
# ---- SIDE BAR ----
#st.sidebar.image(image, width=100)
st.sidebar.title('🩺 Healthcare summarization')
st.sidebar.caption("Transforming complex clinical notes data into __concise__ and __informative__ insights.")
st.sidebar.divider()
# Seleziona paziente
paziente_id = st.sidebar.selectbox(label='Select __patient__ n°: ', options=summaries_df['SUBJECT_ID'])
noteevents_df = get_noteevents(paziente_id)
noteevents_df = noteevents_df.sort_values('CHARTDATE', ascending=True)
st.sidebar.caption("The __patient names__ in the clinical notes of the MIMIC-III dataset are __completely randomized__, ensuring anonymity.")
# ---- MAINPAGE ----
# Estrazione nome e cognome
fake = Faker()
gender = noteevents_df['GENDER'].head(1).to_string(index=False)
if gender == "M":
first_name = fake.first_name_male()
last_name = fake.last_name_male()
gender_sign = "male_sign"
elif gender == "F":
first_name = fake.first_name_female()
last_name = fake.last_name_female()
gender_sign = "female_sign"
else:
first_name = "Name"
last_name = "Unknown"
name = ":red[" + first_name + "]"
lastname = last_name
# Titolo della pagina
st.subheader(":blue[DASHBOARD OF] ")
st.title("{} {} :{}:".format(name, lastname, gender_sign))
st.caption("Patient n°: {}".format(paziente_id))
# Analytics demografiche e cliniche sul paziente selezionato
l1, c1, r1 = st.columns(3)
with l1:
dob = noteevents_df['DOB'].head(1).to_string(index=False)
dob = datetime.strptime(dob, "%Y-%m-%d %H:%M:%S").strftime("%d-%m-%Y")
st.metric(label="📆 Date of birth", value=dob, delta="")
with c1:
chartdate = noteevents_df['CHARTDATE'].tail(1).to_string(index=False)
chartdate = datetime.strptime(chartdate, "%Y-%m-%d").strftime("%d-%m-%Y")
st.metric(label="🏥 Last hospital admission", value=chartdate, delta="")
with r1:
num_note = str(noteevents_df.shape[0])
st.metric(label="📝 Number of clinical notes present", value=num_note, delta="")
expired_flag = noteevents_df['EXPIRE_FLAG'].head(1).to_string(index=False)
if expired_flag == "1":
dod = noteevents_df['DOD'].head(1).to_string(index=False)
dod = datetime.strptime(dod, "%Y-%m-%d %H:%M:%S").strftime("%d-%m-%Y")
st.metric(label="Date of death", value=dod, delta="")
# Extraction Clinical Trend
clinical_trend = summaries_df[summaries_df['SUBJECT_ID'] == paziente_id]['CLINICAL TREND']
clinical_trend_text = ' '.join(clinical_trend.tolist())
if clinical_trend_text in ['Improvement']:
delta = 1
elif clinical_trend_text in ['Worsening', 'Dead']:
delta = -1
else:
delta = 0 # Se il valore non corrisponde a nessuna delle condizioni precedenti
with st.expander("Discover current clinical trends for medical insights and updates", expanded=True):
st.metric(label=":chart_with_upwards_trend: Clinical Trend", value=clinical_trend_text, delta=delta)
# Extraction Summary
summary = summaries_df[summaries_df['SUBJECT_ID'] == paziente_id]['SUMMARY']
summary_text = ' '.join(summary.tolist())
with st.expander(":page_with_curl: __Summary__ - Concise overview highlighting key findings and important medical information", expanded=True):
st.write(summary_text)
st.divider()
# --- ANALYTICS ---
st.subheader("Visualizing Patient's Symptom and Disease Count Temporal")
st.caption("Insights into Health Condition between notes of the Patient " + name + " " + lastname)
count_note = []
for index, row in noteevents_df.iterrows():
note = row['ROW_ID']
date = row['CHARTDATE']
result = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(disease:`Disease or Syndrome`)
WHERE p.subject_id = {paziente_id} AND n.note_clinical_id = {note}
RETURN count(disease) AS totalOccurrences
""")
for record in result:
disease_count = str(record)
result = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(disease:`Disease or Syndrome`)-[]-(s:`Sign or Symptom`)
WHERE p.subject_id = {paziente_id} AND n.note_clinical_id = {note}
RETURN count(s) AS totalOccurrences
""")
for record in result:
symptom_count = str(record)
count_note.append((note,date,disease_count,symptom_count))
count_note_df = pd.DataFrame(count_note, columns=['Note','Date','Disease_Count','Symptom_Count'])
count_note_df['Disease_Count'] = count_note_df['Disease_Count'].astype(int)
count_note_df['Symptom_Count'] = count_note_df['Symptom_Count'].astype(int)
count_note_df = count_note_df.sort_values('Date')
fig = px.line(count_note_df, x='Date', y=['Disease_Count','Symptom_Count'], title='📈 Number of diseases/symptoms diagnosed over time')
st.plotly_chart(fig)
st.divider()
count_procedure = []
for index, row in noteevents_df.iterrows():
note = row['ROW_ID']
date = row['CHARTDATE']
result = graph.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(t:`Therapeutic or Preventive Procedure`)
WHERE p.subject_id = {paziente_id} AND n.note_clinical_id = {note}
RETURN count(t) AS totalOccurrences
""")
for record in result:
therapeutic_count = str(record)
result = graph.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(l:`Laboratory Procedure`)
WHERE p.subject_id = {paziente_id} AND n.note_clinical_id = {note}
RETURN count(l) AS totalOccurrences
""")
for record in result:
laboratory_count = str(record)
count_procedure.append((note,date,therapeutic_count,laboratory_count))
count_procedure_df = pd.DataFrame(count_procedure, columns=['Note','Date','Therapeutic_Procedure_Count','Laboratory_Procedure_Count'])
count_procedure_df['Therapeutic_Procedure_Count'] = count_procedure_df['Therapeutic_Procedure_Count'].astype(int)
count_procedure_df['Laboratory_Procedure_Count'] = count_procedure_df['Laboratory_Procedure_Count'].astype(int)
count_procedure_df = count_procedure_df.sort_values('Date')
fig = px.bar(count_procedure_df, x='Date', y=['Therapeutic_Procedure_Count','Laboratory_Procedure_Count'], barmode='group', title='📊 Number of therapeutic/laboratory procedure diagnosed over time')
st.plotly_chart(fig)
st.divider()
# Lists
st.subheader("⚕️ Explore list drugs, symptoms, and diagnostics of " + name + " " + lastname)
st.caption("Explore __extracted__ drug, symptom, and diagnostic procedure lists from patient's clinical notes: ")
col1, col2, col3 = st.columns(3)
result_pharm = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(d:`Disease or Syndrome`)-[]-(ps:`Pharmacologic Substance`)
WHERE p.subject_id = {paziente_id} AND ps.name <> " " AND NOT (toLower(ps.name) CONTAINS "nan")
return DISTINCT(ps) AS Drugs
""")
drugs = []
for record in result_pharm:
drug = record[0]
drugs.append(drug['name'])
drugs = pd.DataFrame(drugs, columns=['Drugs'])
col1.metric("💊 List of Drugs", value="")
col1.dataframe(drugs, hide_index=True, use_container_width=True)
result_symp = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(d:`Disease or Syndrome`)-[]-(s:`Sign or Symptom`)
WHERE p.subject_id = {paziente_id} AND s.name <> " " AND NOT (toLower(s.name) CONTAINS "nan")
return DISTINCT(s) AS Symptoms
""")
symptoms = []
for record in result_symp:
symptom = record[0]
symptoms.append(symptom['name'])
symptoms = pd.DataFrame(symptoms, columns=['Symptoms'])
col2.metric("🦠 List of Sign or Symptoms", value="")
col2.dataframe(symptoms, hide_index=True, use_container_width=True)
result_proc = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(d:`Disease or Syndrome`)-[]-(dp:`Diagnostic Procedure`)
WHERE p.subject_id = {paziente_id} AND dp.name <> " " AND NOT (toLower(dp.name) CONTAINS "nan")
return DISTINCT(dp) AS Symptoms
""")
procedures = []
for record in result_proc:
procedure = record[0]
procedures.append(procedure['name'])
procedures = pd.DataFrame(procedures, columns=['Diagnostic Procedure'])
col3.metric("🩺 List of Diagnostic Procedure", value="")
col3.dataframe(procedures, hide_index=True, use_container_width=True)
# Analytics visualizzate come grafi
# ----
st.divider()
st.subheader("⚕️ Patient " + name + " " + lastname + " Graph Analysis for insights")
st.caption("Analyze patient's health data through interactive graph visualizations for comprehensive insights: ")
result1 = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(d:`Disease or Syndrome`)
WHERE p.subject_id = {paziente_id} AND d.name <> " " AND NOT (toLower(d.name) CONTAINS "nan")
RETURN p,n,d
""")
nodes = []
edges = []
ids = []
flag = 0
for record in result1:
flag = 1
patient_node = record[0]
if patient_node.identity not in ids:
ids.append(patient_node.identity)
nodes.append( Node(id=patient_node.identity,
label=str(patient_node['subject_id']),
size=30,
color='red')
)
note_node = record[1]
if note_node.identity not in ids:
ids.append(note_node.identity)
nodes.append( Node(id=note_node.identity,
label=str(note_node['note_clinical_id']),
size=25,
color='lightgreen')
)
disease_node = record[2]
if disease_node.identity not in ids:
ids.append(disease_node.identity)
nodes.append( Node(id=disease_node.identity,
label=str(disease_node['name']),
size=20)
)
edges.append( Edge(source=patient_node.identity,
label="HAS_NOTE",
target=note_node.identity,
color='black'
)
)
edges.append( Edge(source=note_node.identity,
label="HAS_DISEASE",
target=disease_node.identity,
color='black'
)
)
with st.expander("__The diseases associated with each patient's clinical note__", expanded=True):
if flag == 1:
st.caption('LEGEND COLOR: __:red[PATIENTS]__ - __:green[CLINICAL NOTE]__ - __:blue[DISEASE OR SINDROME]__ ')
agraph(nodes=nodes,
edges=edges,
config=config)
else:
st.caption("There are no diseases associated with this patient.")
# ----
result2 = graph.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]->(b:`Body Part`)
WHERE p.subject_id = {paziente_id} AND b.name <> " " AND NOT (toLower(b.name) CONTAINS "nan")
RETURN p,b,n
""")
nodes = []
edges = []
ids = []
flag = 0
for record in result2:
flag = 1
patient_node = record[0]
if patient_node.identity not in ids:
ids.append(patient_node.identity)
nodes.append( Node(id=patient_node.identity,
label=str(patient_node['subject_id']),
size=30,
color='red')
)
body_node = record[1]
if body_node.identity not in ids:
ids.append(body_node.identity)
nodes.append( Node(id=body_node.identity,
label=str(body_node['name']),
size=25)
)
note_node = record[2]
if note_node.identity not in ids:
ids.append(note_node.identity)
nodes.append( Node(id=note_node.identity,
label=str(note_node['note_clinical_id']),
size=25,
color='lightgreen')
)
edges.append( Edge(source=patient_node.identity,
label="HAS_NOTE",
target=note_node.identity,
color='black'
)
)
edges.append( Edge(source=note_node.identity,
label="HAS_BODY_PART",
target=body_node.identity,
color='black'
)
)
with st.expander("__The painful body parts associated with each patient's clinical note__", expanded=True):
if flag == 1:
st.caption("LEGEND COLOR: __:red[PATIENTS]__ - __:green[CLINICAL NOTE]__ - __:blue[BODY PART]__ ")
agraph(nodes=nodes,
edges=edges,
config=config)
else:
st.caption("There are no painful body parts associated with this patient.")
# ----
result3 = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(d:`Disease or Syndrome`)-[]-(ps:`Pharmacologic Substance`)
WHERE p.subject_id = {paziente_id} AND ps.name <> " " AND NOT (toLower(ps.name) CONTAINS "nan")
RETURN p,n,d,ps
""")
nodes = []
edges = []
ids = []
flag = 0
for record in result3:
flag = 1
patient_node = record[0]
if patient_node.identity not in ids:
ids.append(patient_node.identity)
nodes.append( Node(id=patient_node.identity,
label=str(patient_node['subject_id']),
size=30,
color='red')
)
note_node = record[1]
if note_node.identity not in ids:
ids.append(note_node.identity)
nodes.append( Node(id=note_node.identity,
label=str(note_node['note_clinical_id']),
size=25,
color='lightgreen')
)
disease_node = record[2]
if disease_node.identity not in ids:
ids.append(disease_node.identity)
nodes.append( Node(id=disease_node.identity,
label=str(disease_node['name']),
size=25
)
)
pharmacological_node = record[3]
if pharmacological_node.identity not in ids:
ids.append(pharmacological_node.identity)
nodes.append( Node(id=pharmacological_node.identity,
label=str(pharmacological_node['name']),
size=25,
color='orange')
)
edges.append( Edge(source=patient_node.identity,
label="HAS_NOTE",
target=note_node.identity,
color='black'
)
)
edges.append( Edge(source=note_node.identity,
label="HAS_DISEASE",
target=disease_node.identity,
color='black'
)
)
edges.append( Edge(source=pharmacological_node.identity,
label="TREATS",
target=disease_node.identity,
color='black'
)
)
with st.expander("__The pharmacological substances taken by the patient for each disease diagnosed in his clinical notes__", expanded=True):
if flag == 1:
st.caption("LEGEND COLOR: __:red[PATIENTS]__ - __:green[CLINICAL NOTE]__ - __:blue[DISEASE OR SINDROME]__ - __:orange[PHARMACOLOGIC SUBSTANCE]__")
agraph(nodes=nodes,
edges=edges,
config=config)
else:
st.caption("There are no drugs associated with this patient's diseases.")
# ----
result4 = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(d:`Disease or Syndrome`)-[]-(s:`Sign or Symptom`)
WHERE p.subject_id = {paziente_id} AND d.name <> " " AND NOT (toLower(d.name) CONTAINS "nan") AND s.name <> " " AND NOT (toLower(s.name) CONTAINS "nan")
RETURN p,n,d,s
""")
nodes = []
edges = []
ids = []
flag = 0
for record in result4:
flag = 1
patient_node = record[0]
if patient_node.identity not in ids:
ids.append(patient_node.identity)
nodes.append( Node(id=patient_node.identity,
label=str(patient_node['subject_id']),
size=25,
color='red')
)
note_node = record[1]
if note_node.identity not in ids:
ids.append(note_node.identity)
nodes.append( Node(id=note_node.identity,
label=str(note_node['note_clinical_id']),
size=25,
color='lightgreen')
)
disease_node = record[2]
if disease_node.identity not in ids:
ids.append(disease_node.identity)
nodes.append( Node(id=disease_node.identity,
label=str(disease_node['name']),
size=25
)
)
symptom_node = record[3]
if symptom_node.identity not in ids:
ids.append(symptom_node.identity)
nodes.append( Node(id=symptom_node.identity,
label=str(symptom_node['name']),
size=25,
color='orange')
)
edges.append( Edge(source=patient_node.identity,
label="HAS_NOTE",
target=note_node.identity,
color='black'
)
)
edges.append( Edge(source=note_node.identity,
label="HAS_DISEASE",
target=disease_node.identity,
color='black'
)
)
edges.append( Edge(source=symptom_node.identity,
label="MAY_CAUSE",
target=disease_node.identity,
color='black'
)
)
with st.expander("__The symptoms presented by the patient for each disease diagnosed in his clinical notes__", expanded=True):
if flag == 1:
st.caption("LEGEND COLOR: __:red[PATIENTS]__ - __:green[CLINICAL NOTE]__ - __:blue[DISEASE OR SINDROME]__ - __:orange[SIGN OR SYMPTOMS]__")
agraph(nodes=nodes,
edges=edges,
config=config)
else:
st.caption("There are no symptoms associated with this patient's diseases.")
# ----
result5 = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(d:`Disease or Syndrome`)-[]-(dp:`Diagnostic Procedure`)
WHERE p.subject_id = {paziente_id} AND d.name <> " " AND NOT (toLower(d.name) CONTAINS "nan") AND dp.name <> " " AND NOT (toLower(dp.name) CONTAINS "nan")
RETURN p,n,d,dp
""")
nodes = []
edges = []
ids = []
flag = 0
for record in result5:
flag = 1
patient_node = record[0]
if patient_node.identity not in ids:
ids.append(patient_node.identity)
nodes.append( Node(id=patient_node.identity,
label=str(patient_node['subject_id']),
size=30,
color='red')
)
note_node = record[1]
if note_node.identity not in ids:
ids.append(note_node.identity)
nodes.append( Node(id=note_node.identity,
label=str(note_node['note_clinical_id']),
size=25,
color='green')
)
disease_node = record[2]
if disease_node.identity not in ids:
ids.append(disease_node.identity)
nodes.append( Node(id=disease_node.identity,
label=str(disease_node['name']),
size=25)
)
procedure_node = record[3]
if procedure_node.identity not in ids:
ids.append(procedure_node.identity)
nodes.append( Node(id=procedure_node.identity,
label=str(procedure_node['name']),
size=25,
color='orange')
)
edges.append( Edge(source=patient_node.identity,
label="HAS_NOTE",
target=note_node.identity,
color='black'
)
)
edges.append( Edge(source=note_node.identity,
label="HAS_DISEASE",
target=disease_node.identity,
color='black'
)
)
edges.append( Edge(source=procedure_node.identity,
label="DIAGNOSTICS",
target=disease_node.identity,
color='black'
)
)
with st.expander("__The diagnostic procedures performed on the patient for each disease diagnosed in his clinical notes__", expanded=True):
if flag == 1:
st.caption("LEGEND COLOR: __:red[PATIENTS]__ - __:green[CLINICAL NOTE]__ - __:blue[DISEASE OR SINDROME]__ - __:orange[DIAGNOSTIC PROCEDURE]__")
agraph(nodes=nodes,
edges=edges,
config=config)
else:
st.caption("There are no diagnostic procedures associated with this patient's diseases.")
# ----
result6 = graph_re.run(f"""
MATCH (p:Patient)-[]-(n:`Note Clinical`)-[]-(d:`Disease or Syndrome`)-[]-(l:`Laboratory or Test Result`)
WHERE p.subject_id = {paziente_id} AND d.name <> " " AND NOT (toLower(d.name) CONTAINS "nan") AND l.name <> " " AND NOT (toLower(l.name) CONTAINS "nan")
RETURN p,n,d,l
""")
nodes = []
edges = []
ids = []
flag = 0
for record in result6:
flag = 1
patient_node = record[0]
if patient_node.identity not in ids:
ids.append(patient_node.identity)
nodes.append( Node(id=patient_node.identity,
label=str(patient_node['subject_id']),
size=30,
color='red')
)
note_node = record[1]
if note_node.identity not in ids:
ids.append(note_node.identity)
nodes.append( Node(id=note_node.identity,
label=str(note_node['note_clinical_id']),
size=25,
color='lightgreen')
)
disease_node = record[2]
if disease_node.identity not in ids:
ids.append(disease_node.identity)
nodes.append( Node(id=disease_node.identity,
label=str(disease_node['name']),
size=25)
)
test_node = record[3]
if test_node.identity not in ids:
ids.append(test_node.identity)
nodes.append( Node(id=test_node.identity,
label=str(test_node['name']),
size=25,
color='orange')
)
edges.append( Edge(source=patient_node.identity,
label="HAS_NOTE",
target=note_node.identity,
color='black'
)
)
edges.append( Edge(source=note_node.identity,
label="HAS_DISEASE",
target=disease_node.identity,
color='black'
)
)
edges.append( Edge(source=test_node.identity,
label="TESTS",
target=disease_node.identity,
color='black'
)
)
with st.expander("__Laboratory tests performed on the patient for each disease diagnosed in his clinical notes__", expanded=True):
if flag == 1:
st.caption("LEGEND COLOR: __:red[PATIENTS]__ - __:green[CLINICAL NOTE]__ - __:blue[DISEASE OR SINDROME]__ - __:orange[LABORATORY OR TEST RESULT]__ ")
agraph(nodes=nodes,
edges=edges,
config=config)
else:
st.caption("There are no laboratory tests associated with this patient's diseases.")
st.caption("Copyright © 2023 - Progetto 'Healthcare Summarization' realizzato in occasione dell'esame di Big Data Engineering tenuto all'Università degli studi di Napoli, Federico II. Realizzato per soli scopi dimostrativi e didattici. By Antonio Romano, Giuseppe Riccio, Michele Cirillo, Andriy Korsun")
# ---- HIDE STREAMLIT STYLE ----
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)