-
Notifications
You must be signed in to change notification settings - Fork 0
/
module1.py
66 lines (47 loc) · 1.43 KB
/
module1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
import random
import pickle
inputos = "E:/Books/Project - Operation Lettuce/PythonApplication1/PythonApplication1/New folder"
DATADIR = inputos;
CATAGORIES = ["alpha","beta","sigma","pi"]
print(os.listdir(inputos))
for category in CATAGORIES:
path = os.path.join(DATADIR,category) #path to dir
for img in os.listdir(path):
img_array = cv2.imread(os.path.join(path,img))
IMG_SIZE = 45
#plt.imshow(new_array)
#plt.show()
#print(img_array)
training_data = []
def create_training_data():
for category in CATAGORIES:
path = os.path.join(DATADIR,category) #path to dir
class_num = CATAGORIES.index(category)
for img in os.listdir(path):
try:
img_array = cv2.imread(os.path.join(path,img))
new_array = cv2.resize(img_array,(IMG_SIZE, IMG_SIZE))
training_data.append([new_array,class_num])
except Exception as e:
pass
create_training_data()
random.shuffle(training_data)
#for sample in training_data[:10]:
# print(sample[1])
X = []
y = []
for features, label in training_data:
X.append(features)
y.append(label)
X = np.array(X)#.reshape(-1,IMG_SIZE,IMG_SIZE,1)
y = np.array(y)
pickle_out = open("X.pickle" , "wb")
pickle.dump(X, pickle_out)
pickle_out.close()
pickle_out = open("y.pickle" , "wb")
pickle.dump(y, pickle_out)
pickle_out.close()