diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index d13f84e..bd10d14 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.10.3","generation_timestamp":"2024-05-25T00:14:25","documenter_version":"1.4.1"}} \ No newline at end of file +{"documenter":{"julia_version":"1.10.3","generation_timestamp":"2024-05-25T00:29:12","documenter_version":"1.4.1"}} \ No newline at end of file diff --git a/dev/index.html b/dev/index.html index 9031ca9..a328b51 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,3 +1,3 @@ Home · SatelliteToolboxAtmosphericModels.jl

SatelliteToolboxAtmosphericModels.jl

This package implements atmospheric models for the SatelliteToolbox.jl ecosystem. Currently, the following models are available:

Installation

julia> using Pkg
-julia> Pkg.install("SatelliteToolboxAtmosphericModels")

References

  • [1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. Microcosm Press, Hawthorn, CA, USA.
+julia> Pkg.install("SatelliteToolboxAtmosphericModels")

References

diff --git a/dev/lib/library/index.html b/dev/lib/library/index.html index 03f7d52..95803d3 100644 --- a/dev/lib/library/index.html +++ b/dev/lib/library/index.html @@ -1,9 +1,9 @@ -Library · SatelliteToolboxAtmosphericModels.jl

Library

Documentation for SatelliteToolboxAtmosphericModels.jl.

SatelliteToolboxAtmosphericModels.AtmosphericModels.JB2008OutputType
struct JB2008Output{T<:Number}

Output of the atmospheric model Jacchia-Bowman 2008.

Fields

  • total_density::T: Total atmospheric density [1 / m³].
  • temperature::T: Temperature at the selected position [K].
  • exospheric_temperature::T: Exospheric temperature [K].
  • N2_number_density::T: Number density of N₂ [1 / m³].
  • O2_number_density::T: Number density of O₂ [1 / m³].
  • O_number_density::T: Number density of O [1 / m³].
  • Ar_number_density::T: Number density of Ar [1 / m³].
  • He_number_density::T: Number density of He [1 / m³].
  • H_number_density::T: Number density of H [1 / m³].
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.JR1971OutputType
struct JR1971Output{T<:Number}

Output of the atmospheric model Jacchia-Roberts 1971.

Fields

  • total_density::T: Total atmospheric density [1 / m³].
  • temperature::T: Temperature at the selected position [K].
  • exospheric_temperature::T: Exospheric temperature [K].
  • N2_number_density::T: Number density of N₂ [1 / m³].
  • O2_number_density::T: Number density of O₂ [1 / m³].
  • O_number_density::T: Number density of O [1 / m³].
  • Ar_number_density::T: Number density of Ar [1 / m³].
  • He_number_density::T: Number density of He [1 / m³].
  • H_number_density::T: Number density of H [1 / m³].
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00FlagsType
struct Nrlmsise00Flags

Flags to configure NRLMSISE-00.

Fields

  • F10_Mean::Bool: F10.7 effect on mean.
  • time_independent::Bool: Independent of time.
  • sym_annual::Bool: Symmetrical annual.
  • sym_semiannual::Bool: Symmetrical semiannual.
  • asym_annual::Bool: Asymmetrical annual.
  • asyn_semiannual::Bool: Asymmetrical semiannual.
  • diurnal::Bool: Diurnal.
  • semidiurnal::Bool: Semidiurnal.
  • daily_ap::Bool: Daily AP.
  • all_ut_long_effects::Bool: All UT/long effects.
  • longitudinal::Bool: Longitudinal.
  • ut_mixed_ut_long::Bool: UT and mixed UT/long.
  • mixed_ap_ut_long::Bool: Mixed AP/UT/long.
  • terdiurnal::Bool: Terdiurnal.
  • departures_from_eq::Bool: Departures from diffusive equilibrium.
  • all_tinf_var::Bool: All TINF variations.
  • all_tlb_var::Bool: All TLB variations.
  • all_tn1_var::Bool: All TN1 variations.
  • all_s_var::Bool: All S variations.
  • all_tn2_var::Bool: All TN2 variations.
  • all_nlb_var::Bool: All NLB variations.
  • all_tn3_var::Bool: All TN3 variations.
  • turbo_scale_height::Bool: Turbo scale height variations.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00OutputType
struct Nrlmsise00Output{T<:Number}

Output structure for NRLMSISE00 model.

Fields

  • total_density::T: Total mass density [kg / m³].
  • temperature: Temperature at the selected altitude [K].
  • exospheric_temperature: Exospheric temperature [K].
  • N_number_density: Nitrogen number density [1 / m³].
  • N2_number_density: N₂ number density [1 / m³].
  • O_number_density: Oxygen number density [1 / m³].
  • aO_number_density: Anomalous Oxygen number density [1 / m³].
  • O2_number_density: O₂ number density [1 / m³].
  • H_number_density: Hydrogen number density [1 / m³].
  • He_number_density: Helium number density [1 / m³].
  • Ar_number_density: Argon number density [1 / m³].

Remarks

Anomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (> 500 km) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term Anomalous Oxygen, since their individual variations are not presently separable with the drag data used to define this model component.

source
SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor2Method
_ccor2(alt::T, r::T, h₁::T, zh::T, h₂::T) where T<:Number -> T

Compute the O and O₂ chemistry / dissociation correction for MSIS models.

Arguments

  • h::Number: Altitude.
  • r::Number: Target ration.
  • h₁::Number: Transition scale length.
  • zh::Number: Altitude of 1/2 r.
  • h₂::Number: Transition scale length 2.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._densmMethod
_densm(h::T, d0::T, xm::T, tz::T, r_lat::T, g_lat::T, tn2::NTuple{N2, T}, tgn2::NTuple{2, T}, tn3::NTuple{N3, T}, tgn3::NTuple{2, T}) where {N2<:Interger, N3<:Integer, T<:Number} -> float(T), float(T)

Compute the temperature and density profiles for the lower atmosphere.

Note

This function returns the density if xm is not 0, or the temperature otherwise.

Arguments

  • h::T: Altitude [km].
  • d₀::T: Reference density, returned if h > _ZN2[1].
  • xm::T: Species molecular weight [ ].
  • g_lat::T: Reference gravity at desired latitude [cm / s²].
  • r_lat::T: Reference radius at desired latitude [km].
  • tn2::NTuple{N2, T}: Temperature at the nodes for ZN2 scale [K].
  • tgn2::NTuple{N2, T}: Temperature gradients at the end nodes for ZN2 scale.
  • tn3::NTuple{N3, T}: Temperature at the nodes for ZN3 scale [K].
  • tgn3::NTuple{N3, T}: Temperature gradients at the end nodes for ZN3 scale.

Returns

  • T: Density [1 / cm³] is xm is not 0, or the temperature [K] otherwise.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._densuMethod
_densu(h::T, dlb::T, tinf::T, tlb::T, xm::T, α::T, zlb::T, s2::T, g_lat::T, r_lat::T, tn1::NTuple{5, T}, tgn1::NTuple{2, T}) where T<:Number -> T, NTuple{5, T}, NTuple{2, T}

Compute the density [1 / cm³] or temperature [K] profiles according to the new lower thermo polynomial.

Note

This function returns the density if xm is not 0, or the temperature otherwise.

Arguments

  • h::T: Altitude [km].
  • dlb::T: Density at lower boundary [1 / cm³].
  • tinf::T: Exospheric temperature [K].
  • tlb::T: Temperature at lower boundary [K].
  • xm::T: Species molecular weight [ ].
  • α::T: Thermal diffusion coefficient.
  • zlb::T: Altitude at lower boundary [km].
  • s2::T: Slope.
  • g_lat::T: Reference gravity at the latitude [cm / s²].
  • r_lat::T: Reference radius at the latitude [km].
  • tn1::NTuple{5, T}: Temperature at nodes for ZN1 scale [K].
  • tgn1::NTuple{2, T}: Temperature gradients at end nodes for ZN1 scale.

Returns

  • T: Density [1 / cm³] is xm is not 0, or the temperature [K] otherwise.
  • NTuple{5, T}: Updated tn1.
  • NTuple{2, T}: Updated tgn1.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._dnetMethod

_dnet(dd::T, dm::T, zhm::T, xmm::T, xm::T) where T<:Number -> T

Compute the turbopause correction for MSIS models, returning the combined density.

Arguments

  • dd::T: Diffusive density.
  • dm::T: Full mixed density.
  • zhm::T: Transition scale length.
  • xmm::T: Full mixed molecular weight.
  • xm::T: Species molecular weight.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._globe7Method
_globe7(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number -> Nrlmsise00Structure{T}, T

Compute the function G(L) with upper thermosphere parameters p and the NRLMSISE-00 structure nrlmsise00.

Note

The variables apt and apdf inside nrlmsise00d can be modified inside this function.

Returns

  • Nrlmsise00Structure{T}: Modified structure nrlmsise00d.
  • T: Result of G(L).
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7Method
_gtd7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}

Compute the temperatures and densities using the information inside the structure nrlmsise00d without including the anomalous oxygen in the total density.

Returns

  • Nrlmsise00Structure{T}: Modified structure nrlmsise00d.
  • Nrlmsise00Output{T}: Structure with the output information.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7dMethod
_gtd7d(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}

Compute the temperatures and densities using the information inside the structure nrlmsise00d including the anomalous oxygen in the total density.

Returns

  • Nrlmsise00Structure{T}: Modified structure nrlmsise00d.
  • Nrlmsise00Output{T}: Structure with the output information.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._gts7Method
_gts7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}

Compute the temperatures and densities using the information inside the structure nrlmsise00d and including the anomalous oxygen in the total density for altitudes higher than 72.5 km (thermospheric portion of NRLMSISE-00).

Returns

  • Nrlmsise00Structure{T}: Modified structure nrlmsise00d.
  • Nrlmsise00Output{T}: Structure with the output information.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._scale_heightMethod
_scale_height(h::T, xm::T, temp::T, g_lat::T, r_lat::T) where T<:Number -> T

Compute the scale height.

Arguments

  • h::T: Altitude [km].
  • xm::T: Species molecular weight [ ].
  • temp::T: Temperature [K].
  • g_lat::T: Reference gravity at desired latitude [cm / s²].
  • r_lat::T: Reference radius at desired latitude [km].
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._splineMethod
_spline(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y::NTuple{N, T}, xᵢ::T) where {N, T<:Number} -> float(T)

Compute the interpolation of the cubic spline y(x) with second derivatives ∂²y at xᵢ.

Note

This function was adapted from Numerical Recipes.

Arguments

  • x::NTuple{N, T}: X components of the tabulated function in ascending order.
  • y::NTuple{N, T}: Y components of the tabulated function evaluated at x.
  • ∂²y::NTuple{N, T}: Second derivatives of y(x) ∂²y/∂x² evaluated at x.
  • xᵢ::T: Point to compute the interpolation.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∂²Method
_spline_∂²(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y₁::T, ∂²yₙ::T) where {N, T<:Number} -> NTuple{N, T}

Compute the 2nd derivatives of the cubic spline interpolation y(x) given the 2nd derivatives at x[1] (∂²y₁) and at x[N] (∂²yₙ). This functions return a tuple with the evaluated 2nd derivatives at each point in x.

Note

This function was adapted from Numerical Recipes.

Note

Values higher than 0.99e30 in the 2nd derivatives at the borders (∂²y₁ and ∂²yₙ) are interpreted as 0.

Arguments

  • x::NTuple{N, T}: X components of the tabulated function in ascending order.
  • y::NTuple{N, T}: Y components of the tabulated function evaluated at x.
  • ∂²y₁::T: Second derivative of y(x) ∂²y/∂x² evaluated at x[1].
  • ∂²yₙ::T: Second derivative of y(x) ∂²y/∂x² evaluated at x[N].
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∫Method
_spline_∫(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y::NTuple{N, T}, xf::Number) where {N, T<:Number} -> float(T)

Compute the integral of the cubic spline function y(x) from x[1] to xf, where the function second derivatives evaluated at x are ∂²y.

Arguments

  • x::NTuple{N, T}: X components of the tabulated function in ascending order.
  • y::NTuple{N, T}: Y components of the tabulated function evaluated at x.
  • ∂²y::NTuple{N, T}: Second derivatives of y(x) ∂²y/∂x² evaluated at x.
  • xf::Number: Abscissa endpoint for integration.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.exponentialMethod
exponential(h::Number) -> Float64

Compute the atmospheric density [kg / m³] at the altitude h [m] above the ellipsoid using the exponential atmospheric model:

                ┌            ┐
+Library · SatelliteToolboxAtmosphericModels.jl

Library

Documentation for SatelliteToolboxAtmosphericModels.jl.

SatelliteToolboxAtmosphericModels.AtmosphericModels.JB2008OutputType
struct JB2008Output{T<:Number}

Output of the atmospheric model Jacchia-Bowman 2008.

Fields

  • total_density::T: Total atmospheric density [1 / m³].
  • temperature::T: Temperature at the selected position [K].
  • exospheric_temperature::T: Exospheric temperature [K].
  • N2_number_density::T: Number density of N₂ [1 / m³].
  • O2_number_density::T: Number density of O₂ [1 / m³].
  • O_number_density::T: Number density of O [1 / m³].
  • Ar_number_density::T: Number density of Ar [1 / m³].
  • He_number_density::T: Number density of He [1 / m³].
  • H_number_density::T: Number density of H [1 / m³].
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.JR1971OutputType
struct JR1971Output{T<:Number}

Output of the atmospheric model Jacchia-Roberts 1971.

Fields

  • total_density::T: Total atmospheric density [1 / m³].
  • temperature::T: Temperature at the selected position [K].
  • exospheric_temperature::T: Exospheric temperature [K].
  • N2_number_density::T: Number density of N₂ [1 / m³].
  • O2_number_density::T: Number density of O₂ [1 / m³].
  • O_number_density::T: Number density of O [1 / m³].
  • Ar_number_density::T: Number density of Ar [1 / m³].
  • He_number_density::T: Number density of He [1 / m³].
  • H_number_density::T: Number density of H [1 / m³].
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00FlagsType
struct Nrlmsise00Flags

Flags to configure NRLMSISE-00.

Fields

  • F10_Mean::Bool: F10.7 effect on mean.
  • time_independent::Bool: Independent of time.
  • sym_annual::Bool: Symmetrical annual.
  • sym_semiannual::Bool: Symmetrical semiannual.
  • asym_annual::Bool: Asymmetrical annual.
  • asyn_semiannual::Bool: Asymmetrical semiannual.
  • diurnal::Bool: Diurnal.
  • semidiurnal::Bool: Semidiurnal.
  • daily_ap::Bool: Daily AP.
  • all_ut_long_effects::Bool: All UT/long effects.
  • longitudinal::Bool: Longitudinal.
  • ut_mixed_ut_long::Bool: UT and mixed UT/long.
  • mixed_ap_ut_long::Bool: Mixed AP/UT/long.
  • terdiurnal::Bool: Terdiurnal.
  • departures_from_eq::Bool: Departures from diffusive equilibrium.
  • all_tinf_var::Bool: All TINF variations.
  • all_tlb_var::Bool: All TLB variations.
  • all_tn1_var::Bool: All TN1 variations.
  • all_s_var::Bool: All S variations.
  • all_tn2_var::Bool: All TN2 variations.
  • all_nlb_var::Bool: All NLB variations.
  • all_tn3_var::Bool: All TN3 variations.
  • turbo_scale_height::Bool: Turbo scale height variations.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00OutputType
struct Nrlmsise00Output{T<:Number}

Output structure for NRLMSISE00 model.

Fields

  • total_density::T: Total mass density [kg / m³].
  • temperature: Temperature at the selected altitude [K].
  • exospheric_temperature: Exospheric temperature [K].
  • N_number_density: Nitrogen number density [1 / m³].
  • N2_number_density: N₂ number density [1 / m³].
  • O_number_density: Oxygen number density [1 / m³].
  • aO_number_density: Anomalous Oxygen number density [1 / m³].
  • O2_number_density: O₂ number density [1 / m³].
  • H_number_density: Hydrogen number density [1 / m³].
  • He_number_density: Helium number density [1 / m³].
  • Ar_number_density: Argon number density [1 / m³].

Remarks

Anomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (> 500 km) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term Anomalous Oxygen, since their individual variations are not presently separable with the drag data used to define this model component.

source
SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor2Method
_ccor2(alt::T, r::T, h₁::T, zh::T, h₂::T) where T<:Number -> T

Compute the O and O₂ chemistry / dissociation correction for MSIS models.

Arguments

  • h::Number: Altitude.
  • r::Number: Target ration.
  • h₁::Number: Transition scale length.
  • zh::Number: Altitude of 1/2 r.
  • h₂::Number: Transition scale length 2.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._densmMethod
_densm(h::T, d0::T, xm::T, tz::T, r_lat::T, g_lat::T, tn2::NTuple{N2, T}, tgn2::NTuple{2, T}, tn3::NTuple{N3, T}, tgn3::NTuple{2, T}) where {N2<:Interger, N3<:Integer, T<:Number} -> float(T), float(T)

Compute the temperature and density profiles for the lower atmosphere.

Note

This function returns the density if xm is not 0, or the temperature otherwise.

Arguments

  • h::T: Altitude [km].
  • d₀::T: Reference density, returned if h > _ZN2[1].
  • xm::T: Species molecular weight [ ].
  • g_lat::T: Reference gravity at desired latitude [cm / s²].
  • r_lat::T: Reference radius at desired latitude [km].
  • tn2::NTuple{N2, T}: Temperature at the nodes for ZN2 scale [K].
  • tgn2::NTuple{N2, T}: Temperature gradients at the end nodes for ZN2 scale.
  • tn3::NTuple{N3, T}: Temperature at the nodes for ZN3 scale [K].
  • tgn3::NTuple{N3, T}: Temperature gradients at the end nodes for ZN3 scale.

Returns

  • T: Density [1 / cm³] is xm is not 0, or the temperature [K] otherwise.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._densuMethod
_densu(h::T, dlb::T, tinf::T, tlb::T, xm::T, α::T, zlb::T, s2::T, g_lat::T, r_lat::T, tn1::NTuple{5, T}, tgn1::NTuple{2, T}) where T<:Number -> T, NTuple{5, T}, NTuple{2, T}

Compute the density [1 / cm³] or temperature [K] profiles according to the new lower thermo polynomial.

Note

This function returns the density if xm is not 0, or the temperature otherwise.

Arguments

  • h::T: Altitude [km].
  • dlb::T: Density at lower boundary [1 / cm³].
  • tinf::T: Exospheric temperature [K].
  • tlb::T: Temperature at lower boundary [K].
  • xm::T: Species molecular weight [ ].
  • α::T: Thermal diffusion coefficient.
  • zlb::T: Altitude at lower boundary [km].
  • s2::T: Slope.
  • g_lat::T: Reference gravity at the latitude [cm / s²].
  • r_lat::T: Reference radius at the latitude [km].
  • tn1::NTuple{5, T}: Temperature at nodes for ZN1 scale [K].
  • tgn1::NTuple{2, T}: Temperature gradients at end nodes for ZN1 scale.

Returns

  • T: Density [1 / cm³] is xm is not 0, or the temperature [K] otherwise.
  • NTuple{5, T}: Updated tn1.
  • NTuple{2, T}: Updated tgn1.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._dnetMethod

_dnet(dd::T, dm::T, zhm::T, xmm::T, xm::T) where T<:Number -> T

Compute the turbopause correction for MSIS models, returning the combined density.

Arguments

  • dd::T: Diffusive density.
  • dm::T: Full mixed density.
  • zhm::T: Transition scale length.
  • xmm::T: Full mixed molecular weight.
  • xm::T: Species molecular weight.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._globe7Method
_globe7(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number -> Nrlmsise00Structure{T}, T

Compute the function G(L) with upper thermosphere parameters p and the NRLMSISE-00 structure nrlmsise00.

Note

The variables apt and apdf inside nrlmsise00d can be modified inside this function.

Returns

  • Nrlmsise00Structure{T}: Modified structure nrlmsise00d.
  • T: Result of G(L).
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7Method
_gtd7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}

Compute the temperatures and densities using the information inside the structure nrlmsise00d without including the anomalous oxygen in the total density.

Returns

  • Nrlmsise00Structure{T}: Modified structure nrlmsise00d.
  • Nrlmsise00Output{T}: Structure with the output information.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7dMethod
_gtd7d(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}

Compute the temperatures and densities using the information inside the structure nrlmsise00d including the anomalous oxygen in the total density.

Returns

  • Nrlmsise00Structure{T}: Modified structure nrlmsise00d.
  • Nrlmsise00Output{T}: Structure with the output information.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._gts7Method
_gts7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}

Compute the temperatures and densities using the information inside the structure nrlmsise00d and including the anomalous oxygen in the total density for altitudes higher than 72.5 km (thermospheric portion of NRLMSISE-00).

Returns

  • Nrlmsise00Structure{T}: Modified structure nrlmsise00d.
  • Nrlmsise00Output{T}: Structure with the output information.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._scale_heightMethod
_scale_height(h::T, xm::T, temp::T, g_lat::T, r_lat::T) where T<:Number -> T

Compute the scale height.

Arguments

  • h::T: Altitude [km].
  • xm::T: Species molecular weight [ ].
  • temp::T: Temperature [K].
  • g_lat::T: Reference gravity at desired latitude [cm / s²].
  • r_lat::T: Reference radius at desired latitude [km].
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._splineMethod
_spline(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y::NTuple{N, T}, xᵢ::T) where {N, T<:Number} -> float(T)

Compute the interpolation of the cubic spline y(x) with second derivatives ∂²y at xᵢ.

Note

This function was adapted from Numerical Recipes.

Arguments

  • x::NTuple{N, T}: X components of the tabulated function in ascending order.
  • y::NTuple{N, T}: Y components of the tabulated function evaluated at x.
  • ∂²y::NTuple{N, T}: Second derivatives of y(x) ∂²y/∂x² evaluated at x.
  • xᵢ::T: Point to compute the interpolation.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∂²Method
_spline_∂²(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y₁::T, ∂²yₙ::T) where {N, T<:Number} -> NTuple{N, T}

Compute the 2nd derivatives of the cubic spline interpolation y(x) given the 2nd derivatives at x[1] (∂²y₁) and at x[N] (∂²yₙ). This functions return a tuple with the evaluated 2nd derivatives at each point in x.

Note

This function was adapted from Numerical Recipes.

Note

Values higher than 0.99e30 in the 2nd derivatives at the borders (∂²y₁ and ∂²yₙ) are interpreted as 0.

Arguments

  • x::NTuple{N, T}: X components of the tabulated function in ascending order.
  • y::NTuple{N, T}: Y components of the tabulated function evaluated at x.
  • ∂²y₁::T: Second derivative of y(x) ∂²y/∂x² evaluated at x[1].
  • ∂²yₙ::T: Second derivative of y(x) ∂²y/∂x² evaluated at x[N].
source
SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∫Method
_spline_∫(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y::NTuple{N, T}, xf::Number) where {N, T<:Number} -> float(T)

Compute the integral of the cubic spline function y(x) from x[1] to xf, where the function second derivatives evaluated at x are ∂²y.

Arguments

  • x::NTuple{N, T}: X components of the tabulated function in ascending order.
  • y::NTuple{N, T}: Y components of the tabulated function evaluated at x.
  • ∂²y::NTuple{N, T}: Second derivatives of y(x) ∂²y/∂x² evaluated at x.
  • xf::Number: Abscissa endpoint for integration.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.exponentialMethod
exponential(h::Number) -> Float64

Compute the atmospheric density [kg / m³] at the altitude h [m] above the ellipsoid using the exponential atmospheric model:

                ┌            ┐
                 │    h - h₀  │
 ρ(h) = ρ₀ . exp │ - ──────── │ ,
                 │      H     │
-                └            ┘

in which ρ₀, h₀, and H are parameters obtained from tables that depend only on h.

source
SatelliteToolboxAtmosphericModels.AtmosphericModels.jb2008Method
jb2008(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}
-jb2008(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}

Compute the atmospheric density using the Jacchia-Bowman 2008 (JB2008) model.

This model is a product of the Space Environment Technologies, please, refer to the following website for more information:

http://sol.spacenvironment.net/JB2008/

If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().

Arguments

  • jd::Number: Julian day to compute the model.
  • instant::DateTime: Instant to compute the model represent using DateTime.
  • ϕ_gd: Geodetic latitude [rad].
  • λ: Longitude [rad].
  • h: Altitude [m].
  • F10: 10.7-cm solar flux [sfu] obtained 1 day before jd.
  • F10ₐ: 10.7-cm averaged solar flux using a 81-day window centered on input time obtained 1 day before jd.
  • S10: EUV index (26-34 nm) scaled to F10.7 obtained 1 day before jd.
  • S10ₐ: EUV 81-day averaged centered index obtained 1 day before jd.
  • M10: MG2 index scaled to F10.7 obtained 2 days before jd.
  • M10ₐ: MG2 81-day averaged centered index obtained 2 day before jd.
  • Y10: Solar X-ray & Ly-α index scaled to F10.7 obtained 5 days before jd.
  • Y10ₐ: Solar X-ray & Ly-α 81-day averaged centered index obtained 5 days before jd.
  • DstΔTc: Temperature variation related to the Dst.

Returns

  • JB2008Output{Float64}: Structure containing the results obtained from the model.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.jr1971Method
jr1971(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}
-jr1971(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}

Compute the atmospheric density using the Jacchia-Roberts 1971 model.

If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().

Arguments

  • jd::Number: Julian day to compute the model.
  • instant::DateTime: Instant to compute the model represent using DateTime.
  • ϕ_gd::Number: Geodetic latitude [rad].
  • λ::Number: Longitude [rad].
  • h::Number: Altitude [m].
  • F10::Number: 10.7-cm solar flux [sfu].
  • F10ₐ::Number: 10.7-cm averaged solar flux, 81-day centered on input time [sfu].
  • Kp::Number: Kp geomagnetic index with a delay of 3 hours.

Returns

  • JR1971Output{Float64}: Structure containing the results obtained from the model.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.nrlmsise00Method
nrlmsise00(instant::DateTime, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}
-nrlmsise00(jd::Number, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}

Compute the atmospheric density using the NRLMSISE-00 model.

If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().

Arguments

  • instant::DateTime: Instant to compute the model represent using DateTime.
  • jd::Number: Julian day to compute the model.
  • h::Number: Altitude [m].
  • ϕ_gd::Number: Geodetic latitude [rad].
  • λ::Number: Longitude [rad].
  • F10ₐ::Number: 10.7-cm averaged solar flux, 90-day centered on input time [sfu].
  • F10::Number: 10.7-cm solar flux [sfu].
  • ap::Union{Number, AbstractVector}: Magnetic index, see the section AP for more information.

Keywords

  • flags::Nrlmsise00Flags: A list of flags to configure the model. For more information, see [Nrlmsise00Flags]@(ref). (Default = Nrlmsise00Flags())
  • include_anomalous_oxygen::Bool: If true, the anomalous oxygen density will be included in the total density computation. (Default = true)
  • P::Union{Nothing, Matrix}: If the user passes a matrix with dimensions equal to or greater than 8 × 4, it will be used when computing the Legendre associated functions, reducing allocations and improving the performance. If it is nothing, the matrix is allocated inside the function. (Default nothing)

Returns

  • Nrlmsise00Output{Float64}: Structure containing the results obtained from the model.

AP

The input variable ap contains the magnetic index. It can be a Number or an AbstractVector.

If ap is a number, it must contain the daily magnetic index.

If ap is an AbstractVector, it must be a vector with 7 dimensions as described below:

IndexDescription
1Daily AP.
23 hour AP index for current time.
33 hour AP index for 3 hours before current time.
43 hour AP index for 6 hours before current time.
53 hour AP index for 9 hours before current time.
6Average of eight 3 hour AP indices from 12 to 33 hours prior to current time.
7Average of eight 3 hour AP indices from 36 to 57 hours prior to current time.

Extended Help

  1. The densities of O, H, and N are set to 0 below 72.5 km.
  2. The exospheric temperature is set to global average for altitudes below 120 km. The 120 km gradient is left at global average value for altitudes below 72.5 km.
  3. Anomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (> 500 km) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term Anomalous Oxygen, since their individual variations are not presently separable with the drag data used to define this model component.

Notes on Input Variables

F10 and F10ₐ values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values:

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

F10, F10ₐ, and ap effects are neither large nor well established below 80 km and these parameters should be set to 150, 150, and 4 respectively.

If include_anomalous_oxygen is false, the total_density field in the output is the sum of the mass densities of the species He, O, N₂, O₂, Ar, H, and N, but does not include anomalous oxygen.

If include_anomalous_oxygen is false, the total_density field in the output is the effective total mass density for drag and is the sum of the mass densities of all species in this model including the anomalous oxygen.

source
+ └ ┘

in which ρ₀, h₀, and H are parameters obtained from tables that depend only on h.

source
SatelliteToolboxAtmosphericModels.AtmosphericModels.jb2008Method
jb2008(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}
+jb2008(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}

Compute the atmospheric density using the Jacchia-Bowman 2008 (JB2008) model.

This model is a product of the Space Environment Technologies, please, refer to the following website for more information:

http://sol.spacenvironment.net/JB2008/

If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().

Arguments

  • jd::Number: Julian day to compute the model.
  • instant::DateTime: Instant to compute the model represent using DateTime.
  • ϕ_gd: Geodetic latitude [rad].
  • λ: Longitude [rad].
  • h: Altitude [m].
  • F10: 10.7-cm solar flux [sfu] obtained 1 day before jd.
  • F10ₐ: 10.7-cm averaged solar flux using a 81-day window centered on input time obtained 1 day before jd.
  • S10: EUV index (26-34 nm) scaled to F10.7 obtained 1 day before jd.
  • S10ₐ: EUV 81-day averaged centered index obtained 1 day before jd.
  • M10: MG2 index scaled to F10.7 obtained 2 days before jd.
  • M10ₐ: MG2 81-day averaged centered index obtained 2 day before jd.
  • Y10: Solar X-ray & Ly-α index scaled to F10.7 obtained 5 days before jd.
  • Y10ₐ: Solar X-ray & Ly-α 81-day averaged centered index obtained 5 days before jd.
  • DstΔTc: Temperature variation related to the Dst.

Returns

  • JB2008Output{Float64}: Structure containing the results obtained from the model.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.jr1971Method
jr1971(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}
+jr1971(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}

Compute the atmospheric density using the Jacchia-Roberts 1971 model.

If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().

Arguments

  • jd::Number: Julian day to compute the model.
  • instant::DateTime: Instant to compute the model represent using DateTime.
  • ϕ_gd::Number: Geodetic latitude [rad].
  • λ::Number: Longitude [rad].
  • h::Number: Altitude [m].
  • F10::Number: 10.7-cm solar flux [sfu].
  • F10ₐ::Number: 10.7-cm averaged solar flux, 81-day centered on input time [sfu].
  • Kp::Number: Kp geomagnetic index with a delay of 3 hours.

Returns

  • JR1971Output{Float64}: Structure containing the results obtained from the model.
source
SatelliteToolboxAtmosphericModels.AtmosphericModels.nrlmsise00Method
nrlmsise00(instant::DateTime, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}
+nrlmsise00(jd::Number, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}

Compute the atmospheric density using the NRLMSISE-00 model.

If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().

Arguments

  • instant::DateTime: Instant to compute the model represent using DateTime.
  • jd::Number: Julian day to compute the model.
  • h::Number: Altitude [m].
  • ϕ_gd::Number: Geodetic latitude [rad].
  • λ::Number: Longitude [rad].
  • F10ₐ::Number: 10.7-cm averaged solar flux, 90-day centered on input time [sfu].
  • F10::Number: 10.7-cm solar flux [sfu].
  • ap::Union{Number, AbstractVector}: Magnetic index, see the section AP for more information.

Keywords

  • flags::Nrlmsise00Flags: A list of flags to configure the model. For more information, see [Nrlmsise00Flags]@(ref). (Default = Nrlmsise00Flags())
  • include_anomalous_oxygen::Bool: If true, the anomalous oxygen density will be included in the total density computation. (Default = true)
  • P::Union{Nothing, Matrix}: If the user passes a matrix with dimensions equal to or greater than 8 × 4, it will be used when computing the Legendre associated functions, reducing allocations and improving the performance. If it is nothing, the matrix is allocated inside the function. (Default nothing)

Returns

  • Nrlmsise00Output{Float64}: Structure containing the results obtained from the model.

AP

The input variable ap contains the magnetic index. It can be a Number or an AbstractVector.

If ap is a number, it must contain the daily magnetic index.

If ap is an AbstractVector, it must be a vector with 7 dimensions as described below:

IndexDescription
1Daily AP.
23 hour AP index for current time.
33 hour AP index for 3 hours before current time.
43 hour AP index for 6 hours before current time.
53 hour AP index for 9 hours before current time.
6Average of eight 3 hour AP indices from 12 to 33 hours prior to current time.
7Average of eight 3 hour AP indices from 36 to 57 hours prior to current time.

Extended Help

  1. The densities of O, H, and N are set to 0 below 72.5 km.
  2. The exospheric temperature is set to global average for altitudes below 120 km. The 120 km gradient is left at global average value for altitudes below 72.5 km.
  3. Anomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (> 500 km) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term Anomalous Oxygen, since their individual variations are not presently separable with the drag data used to define this model component.

Notes on Input Variables

F10 and F10ₐ values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values:

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

F10, F10ₐ, and ap effects are neither large nor well established below 80 km and these parameters should be set to 150, 150, and 4 respectively.

If include_anomalous_oxygen is false, the total_density field in the output is the sum of the mass densities of the species He, O, N₂, O₂, Ar, H, and N, but does not include anomalous oxygen.

If include_anomalous_oxygen is false, the total_density field in the output is the effective total mass density for drag and is the sum of the mass densities of all species in this model including the anomalous oxygen.

source
diff --git a/dev/man/exponential/index.html b/dev/man/exponential/index.html index 8218ee9..a5de3fc 100644 --- a/dev/man/exponential/index.html +++ b/dev/man/exponential/index.html @@ -1,2 +1,2 @@ -Exponential · SatelliteToolboxAtmosphericModels.jl

Exponential Atmospheric Model

This model assumes we can compute the atmospheric density by:

\[\rho(h) = \rho_0 \cdot exp \left\lbrace - \frac{h - h_0}{H} \right\rbrace~,\]

where $\rho_0$, $h_0$, and $H$ are parameters obtained from tables. Reference [1] provides a discretization of those parameters based on the selected height $h$ that was obtained after evaluation of some accurate models.

In this package, we can compute the model using the following function:

AtmosphericModels.exponential(h::T) where T<:Number -> Float64

where h is the desired height [m].

Warning

Notice that this model does not consider important effects such as the Sun activity, the geomagnetic activity, the local time at the desired location, and others. Hence, although this can be used for fast evaluations, the accuracy is not good.

Examples

julia> AtmosphericModels.exponential(700e3)3.614e-14

References

  • [1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. Microcosm Press, Hawthorn, CA, USA.
+Exponential · SatelliteToolboxAtmosphericModels.jl

Exponential Atmospheric Model

This model assumes we can compute the atmospheric density by:

\[\rho(h) = \rho_0 \cdot exp \left\lbrace - \frac{h - h_0}{H} \right\rbrace~,\]

where $\rho_0$, $h_0$, and $H$ are parameters obtained from tables. Reference [1] provides a discretization of those parameters based on the selected height $h$ that was obtained after evaluation of some accurate models.

In this package, we can compute the model using the following function:

AtmosphericModels.exponential(h::T) where T<:Number -> Float64

where h is the desired height [m].

Warning

Notice that this model does not consider important effects such as the Sun activity, the geomagnetic activity, the local time at the desired location, and others. Hence, although this can be used for fast evaluations, the accuracy is not good.

Examples

julia> AtmosphericModels.exponential(700e3)3.614e-14

References

  • [1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. Microcosm Press, Hawthorn, CA, USA.
diff --git a/dev/man/jb2008/index.html b/dev/man/jb2008/index.html index d4450bf..f673bad 100644 --- a/dev/man/jb2008/index.html +++ b/dev/man/jb2008/index.html @@ -23,9 +23,7 @@ O number density : 7.67489e+10 1 / m³ Ar number density : 13.3774 1 / m³ He number density : 4.64209e+11 1 / m³ - H number density : 4.07234e+10 1 / m³
julia> SpaceIndices.init()[ Info: Downloading the file 'DTCFILE.TXT' from 'https://sol.spacenvironment.net/JB2008/indices/DTCFILE.TXT'...
-[ Info: Downloading the file 'SOLFSMY.TXT' from 'https://sol.spacenvironment.net/JB2008/indices/SOLFSMY.TXT'...
-[ Info: Downloading the file 'SW-All.csv' from 'https://celestrak.org/SpaceData/SW-All.csv'...
julia> AtmosphericModels.jb2008(DateTime("2022-06-19T18:35:00"), deg2rad(-22), deg2rad(-45), 700e3)Jacchia-Bowman 2008 Atmospheric Model Result: + H number density : 4.07234e+10 1 / m³
julia> SpaceIndices.init()
julia> AtmosphericModels.jb2008(DateTime("2022-06-19T18:35:00"), deg2rad(-22), deg2rad(-45), 700e3)Jacchia-Bowman 2008 Atmospheric Model Result: Total density : 2.68424e-14 kg / m³ Temperature : 1092.62 K Exospheric Temp. : 1082.63 K @@ -56,4 +54,4 @@ O number density : 8.34197e+11 1 / m³ Ar number density : 9466.08 1 / m³ He number density : 6.86234e+11 1 / m³ - H number density : 5.86519e+09 1 / m³
+ H number density : 5.86519e+09 1 / m³ diff --git a/dev/man/jr1971/index.html b/dev/man/jr1971/index.html index cf30cbc..c7b4bac 100644 --- a/dev/man/jr1971/index.html +++ b/dev/man/jr1971/index.html @@ -42,4 +42,4 @@ O number density : 1.88625e+12 1 / m³ Ar number density : 8826.28 1 / m³ He number density : 1.50861e+12 1 / m³ - H number density : 9.14578e+09 1 / m³ + H number density : 9.14578e+09 1 / m³ diff --git a/dev/man/nrlmsise00/index.html b/dev/man/nrlmsise00/index.html index de1d3c3..b0df56c 100644 --- a/dev/man/nrlmsise00/index.html +++ b/dev/man/nrlmsise00/index.html @@ -48,4 +48,4 @@ O₂ number density : 287502 1 / m³ Ar number density : 18.6967 1 / m³ He number density : 6.15464e+11 1 / m³ - H number density : 1.28711e+11 1 / m³ + H number density : 1.28711e+11 1 / m³ diff --git a/dev/objects.inv b/dev/objects.inv index 0663c61..20cd697 100644 Binary files a/dev/objects.inv and b/dev/objects.inv differ diff --git a/dev/search_index.js b/dev/search_index.js index 3e2fb48..5313f01 100644 --- a/dev/search_index.js +++ b/dev/search_index.js @@ -1,3 +1,3 @@ var documenterSearchIndex = {"docs": -[{"location":"lib/library/#Library","page":"Library","title":"Library","text":"","category":"section"},{"location":"lib/library/","page":"Library","title":"Library","text":"Documentation for SatelliteToolboxAtmosphericModels.jl.","category":"page"},{"location":"lib/library/","page":"Library","title":"Library","text":"Modules = [SatelliteToolboxAtmosphericModels, AtmosphericModels]\nPrivate = true","category":"page"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_H","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_H","text":"const _EXPONENTIAL_ATMOSPHERE_H\n\nScale height for the exponential atmospheric model [km].\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_H₀","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_H₀","text":"const _EXPONENTIAL_ATMOSPHERE_H₀\n\nBase altitude for the exponential atmospheric model [km].\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_ρ₀","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_ρ₀","text":"const _EXPONENTIAL_ATMOSPHERE_ρ₀\n\nNominal density for the exponential atmospheric model [kg / m³].\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._JR1971_CONSTANTS","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._JR1971_CONSTANTS","text":"const _JR1971_CONSTANTS\n\nConstants for the Jacchia-Roberts 1971 atmospheric model.\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._JR1971_ROOT_GUESS","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._JR1971_ROOT_GUESS","text":"const _JR1971_ROOT_GUESS\n\nFirst guess to compute the roots of a polynomial to find the density below 125 km.\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.JB2008Output","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.JB2008Output","text":"struct JB2008Output{T<:Number}\n\nOutput of the atmospheric model Jacchia-Bowman 2008.\n\nFields\n\ntotal_density::T: Total atmospheric density [1 / m³].\ntemperature::T: Temperature at the selected position [K].\nexospheric_temperature::T: Exospheric temperature [K].\nN2_number_density::T: Number density of N₂ [1 / m³].\nO2_number_density::T: Number density of O₂ [1 / m³].\nO_number_density::T: Number density of O [1 / m³].\nAr_number_density::T: Number density of Ar [1 / m³].\nHe_number_density::T: Number density of He [1 / m³].\nH_number_density::T: Number density of H [1 / m³].\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.JR1971Output","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.JR1971Output","text":"struct JR1971Output{T<:Number}\n\nOutput of the atmospheric model Jacchia-Roberts 1971.\n\nFields\n\ntotal_density::T: Total atmospheric density [1 / m³].\ntemperature::T: Temperature at the selected position [K].\nexospheric_temperature::T: Exospheric temperature [K].\nN2_number_density::T: Number density of N₂ [1 / m³].\nO2_number_density::T: Number density of O₂ [1 / m³].\nO_number_density::T: Number density of O [1 / m³].\nAr_number_density::T: Number density of Ar [1 / m³].\nHe_number_density::T: Number density of He [1 / m³].\nH_number_density::T: Number density of H [1 / m³].\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Flags","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Flags","text":"struct Nrlmsise00Flags\n\nFlags to configure NRLMSISE-00.\n\nFields\n\nF10_Mean::Bool: F10.7 effect on mean.\ntime_independent::Bool: Independent of time.\nsym_annual::Bool: Symmetrical annual.\nsym_semiannual::Bool: Symmetrical semiannual.\nasym_annual::Bool: Asymmetrical annual.\nasyn_semiannual::Bool: Asymmetrical semiannual.\ndiurnal::Bool: Diurnal.\nsemidiurnal::Bool: Semidiurnal.\ndaily_ap::Bool: Daily AP.\nall_ut_long_effects::Bool: All UT/long effects.\nlongitudinal::Bool: Longitudinal.\nut_mixed_ut_long::Bool: UT and mixed UT/long.\nmixed_ap_ut_long::Bool: Mixed AP/UT/long.\nterdiurnal::Bool: Terdiurnal.\ndepartures_from_eq::Bool: Departures from diffusive equilibrium.\nall_tinf_var::Bool: All TINF variations.\nall_tlb_var::Bool: All TLB variations.\nall_tn1_var::Bool: All TN1 variations.\nall_s_var::Bool: All S variations.\nall_tn2_var::Bool: All TN2 variations.\nall_nlb_var::Bool: All NLB variations.\nall_tn3_var::Bool: All TN3 variations.\nturbo_scale_height::Bool: Turbo scale height variations.\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Output","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Output","text":"struct Nrlmsise00Output{T<:Number}\n\nOutput structure for NRLMSISE00 model.\n\nFields\n\ntotal_density::T: Total mass density [kg / m³].\ntemperature: Temperature at the selected altitude [K].\nexospheric_temperature: Exospheric temperature [K].\nN_number_density: Nitrogen number density [1 / m³].\nN2_number_density: N₂ number density [1 / m³].\nO_number_density: Oxygen number density [1 / m³].\naO_number_density: Anomalous Oxygen number density [1 / m³].\nO2_number_density: O₂ number density [1 / m³].\nH_number_density: Hydrogen number density [1 / m³].\nHe_number_density: Helium number density [1 / m³].\nAr_number_density: Argon number density [1 / m³].\n\nRemarks\n\nAnomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (> 500 km) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term Anomalous Oxygen, since their individual variations are not presently separable with the drag data used to define this model component.\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure","text":"struct Nrlmsise00Structure{T<:Number, T_AP<:Union{Number, AbstractVector}}\n\nStructure with the configuration parameters for NRLMSISE-00 model. T is the floating-number type and T_AP is the type of the AP information, which can be a Number or AbstractVector.\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor-Union{Tuple{T}, NTuple{4, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor","text":"_ccor(h::T, r::T, h₁::T, zh::T) where T<:Number -> T\n\nCompute the chemistry / dissociation correction for MSIS models.\n\nArguments\n\nh::Number: Altitude.\nr::Number: Target ratio.\nh₁::Number: Transition scale length.\nzh::Number: Altitude of 1/2 r.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor2-Union{Tuple{T}, NTuple{5, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor2","text":"_ccor2(alt::T, r::T, h₁::T, zh::T, h₂::T) where T<:Number -> T\n\nCompute the O and O₂ chemistry / dissociation correction for MSIS models.\n\nArguments\n\nh::Number: Altitude.\nr::Number: Target ration.\nh₁::Number: Transition scale length.\nzh::Number: Altitude of 1/2 r.\nh₂::Number: Transition scale length 2.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._densm-Union{Tuple{T}, Tuple{T, T, T, T, T, NTuple{4, T}, Tuple{T, T}, NTuple{5, T}, Tuple{T, T}}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._densm","text":"_densm(h::T, d0::T, xm::T, tz::T, r_lat::T, g_lat::T, tn2::NTuple{N2, T}, tgn2::NTuple{2, T}, tn3::NTuple{N3, T}, tgn3::NTuple{2, T}) where {N2<:Interger, N3<:Integer, T<:Number} -> float(T), float(T)\n\nCompute the temperature and density profiles for the lower atmosphere.\n\nnote: Note\nThis function returns the density if xm is not 0, or the temperature otherwise.\n\nArguments\n\nh::T: Altitude [km].\nd₀::T: Reference density, returned if h > _ZN2[1].\nxm::T: Species molecular weight [ ].\ng_lat::T: Reference gravity at desired latitude [cm / s²].\nr_lat::T: Reference radius at desired latitude [km].\ntn2::NTuple{N2, T}: Temperature at the nodes for ZN2 scale [K].\ntgn2::NTuple{N2, T}: Temperature gradients at the end nodes for ZN2 scale.\ntn3::NTuple{N3, T}: Temperature at the nodes for ZN3 scale [K].\ntgn3::NTuple{N3, T}: Temperature gradients at the end nodes for ZN3 scale.\n\nReturns\n\nT: Density [1 / cm³] is xm is not 0, or the temperature [K] otherwise.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._densu-Union{Tuple{T}, Tuple{T, T, T, T, T, T, T, T, T, T, NTuple{5, T}, Tuple{T, T}}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._densu","text":"_densu(h::T, dlb::T, tinf::T, tlb::T, xm::T, α::T, zlb::T, s2::T, g_lat::T, r_lat::T, tn1::NTuple{5, T}, tgn1::NTuple{2, T}) where T<:Number -> T, NTuple{5, T}, NTuple{2, T}\n\nCompute the density [1 / cm³] or temperature [K] profiles according to the new lower thermo polynomial.\n\nnote: Note\nThis function returns the density if xm is not 0, or the temperature otherwise.\n\nArguments\n\nh::T: Altitude [km].\ndlb::T: Density at lower boundary [1 / cm³].\ntinf::T: Exospheric temperature [K].\ntlb::T: Temperature at lower boundary [K].\nxm::T: Species molecular weight [ ].\nα::T: Thermal diffusion coefficient.\nzlb::T: Altitude at lower boundary [km].\ns2::T: Slope.\ng_lat::T: Reference gravity at the latitude [cm / s²].\nr_lat::T: Reference radius at the latitude [km].\ntn1::NTuple{5, T}: Temperature at nodes for ZN1 scale [K].\ntgn1::NTuple{2, T}: Temperature gradients at end nodes for ZN1 scale.\n\nReturns\n\nT: Density [1 / cm³] is xm is not 0, or the temperature [K] otherwise.\nNTuple{5, T}: Updated tn1.\nNTuple{2, T}: Updated tgn1.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._dnet-Union{Tuple{T}, NTuple{5, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._dnet","text":"_dnet(dd::T, dm::T, zhm::T, xmm::T, xm::T) where T<:Number -> T\n\nCompute the turbopause correction for MSIS models, returning the combined density.\n\nArguments\n\ndd::T: Diffusive density.\ndm::T: Full mixed density.\nzhm::T: Transition scale length.\nxmm::T: Full mixed molecular weight.\nxm::T: Species molecular weight.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._glob7s-Union{Tuple{T}, Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}, AbstractVector{T}}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._glob7s","text":"_glob7s(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number -> T\n\nCompute the function G(L) with lower atmosphere parameters p and the NRLMSISE-00 structure nrlmsise00d.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._globe7-Union{Tuple{T}, Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}, AbstractVector{T}}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._globe7","text":"_globe7(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number -> Nrlmsise00Structure{T}, T\n\nCompute the function G(L) with upper thermosphere parameters p and the NRLMSISE-00 structure nrlmsise00.\n\nnote: Note\nThe variables apt and apdf inside nrlmsise00d can be modified inside this function.\n\nReturns\n\nNrlmsise00Structure{T}: Modified structure nrlmsise00d.\nT: Result of G(L).\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._gravity_and_effective_radius-Tuple{T} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._gravity_and_effective_radius","text":"_gravity_and_effective_radius(ϕ_gd::T) where T<:Number -> T, T\n\nCompute the gravity [cm / s²] and effective radius [km] at the geodetic latitude ϕ_gd [°].\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7-Union{Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}}, Tuple{T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7","text":"_gtd7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}\n\nCompute the temperatures and densities using the information inside the structure nrlmsise00d without including the anomalous oxygen in the total density.\n\nReturns\n\nNrlmsise00Structure{T}: Modified structure nrlmsise00d.\nNrlmsise00Output{T}: Structure with the output information.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7d-Union{Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}}, Tuple{T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7d","text":"_gtd7d(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}\n\nCompute the temperatures and densities using the information inside the structure nrlmsise00d including the anomalous oxygen in the total density.\n\nReturns\n\nNrlmsise00Structure{T}: Modified structure nrlmsise00d.\nNrlmsise00Output{T}: Structure with the output information.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._gts7-Union{Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}}, Tuple{T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._gts7","text":"_gts7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}\n\nCompute the temperatures and densities using the information inside the structure nrlmsise00d and including the anomalous oxygen in the total density for altitudes higher than 72.5 km (thermospheric portion of NRLMSISE-00).\n\nReturns\n\nNrlmsise00Structure{T}: Modified structure nrlmsise00d.\nNrlmsise00Output{T}: Structure with the output information.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._g₀-Tuple{Number, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._g₀","text":"_g0(a::Number, p::AbstractVector)\n\nCompute g₀ function (see Eq. A24d) using the coefficients abs_p25 = abs(p[25]) and p26 = p[26].\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._scale_height-Union{Tuple{T}, NTuple{5, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._scale_height","text":"_scale_height(h::T, xm::T, temp::T, g_lat::T, r_lat::T) where T<:Number -> T\n\nCompute the scale height.\n\nArguments\n\nh::T: Altitude [km].\nxm::T: Species molecular weight [ ].\ntemp::T: Temperature [K].\ng_lat::T: Reference gravity at desired latitude [cm / s²].\nr_lat::T: Reference radius at desired latitude [km].\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._sg₀-Tuple{Number, AbstractVector, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._sg₀","text":"_sg₀(ex::Number, ap::AbstractVector, abs_p25::Number, p26::Number)\n\nCompute the sg₀ function (see Eq. A24a) using the ap vector and the coefficients abs_p25 and p26.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._spline-Union{Tuple{T}, Tuple{N}, Tuple{Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, T}} where {N, T<:Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._spline","text":"_spline(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y::NTuple{N, T}, xᵢ::T) where {N, T<:Number} -> float(T)\n\nCompute the interpolation of the cubic spline y(x) with second derivatives ∂²y at xᵢ.\n\nnote: Note\nThis function was adapted from Numerical Recipes.\n\nArguments\n\nx::NTuple{N, T}: X components of the tabulated function in ascending order.\ny::NTuple{N, T}: Y components of the tabulated function evaluated at x.\n∂²y::NTuple{N, T}: Second derivatives of y(x) ∂²y/∂x² evaluated at x.\nxᵢ::T: Point to compute the interpolation.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∂²-Union{Tuple{T}, Tuple{N}, Tuple{Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, T, T}} where {N, T<:Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∂²","text":"_spline_∂²(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y₁::T, ∂²yₙ::T) where {N, T<:Number} -> NTuple{N, T}\n\nCompute the 2nd derivatives of the cubic spline interpolation y(x) given the 2nd derivatives at x[1] (∂²y₁) and at x[N] (∂²yₙ). This functions return a tuple with the evaluated 2nd derivatives at each point in x.\n\nnote: Note\nThis function was adapted from Numerical Recipes.\n\nnote: Note\nValues higher than 0.99e30 in the 2nd derivatives at the borders (∂²y₁ and ∂²yₙ) are interpreted as 0.\n\nArguments\n\nx::NTuple{N, T}: X components of the tabulated function in ascending order.\ny::NTuple{N, T}: Y components of the tabulated function evaluated at x.\n∂²y₁::T: Second derivative of y(x) ∂²y/∂x² evaluated at x[1].\n∂²yₙ::T: Second derivative of y(x) ∂²y/∂x² evaluated at x[N].\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∫-Union{Tuple{T}, Tuple{N}, Tuple{Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, Number}} where {N, T<:Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∫","text":"_spline_∫(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y::NTuple{N, T}, xf::Number) where {N, T<:Number} -> float(T)\n\nCompute the integral of the cubic spline function y(x) from x[1] to xf, where the function second derivatives evaluated at x are ∂²y.\n\nArguments\n\nx::NTuple{N, T}: X components of the tabulated function in ascending order.\ny::NTuple{N, T}: Y components of the tabulated function evaluated at x.\n∂²y::NTuple{N, T}: Second derivatives of y(x) ∂²y/∂x² evaluated at x.\nxf::Number: Abscissa endpoint for integration.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._ζ-Union{Tuple{T}, Tuple{T, T, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._ζ","text":"_ζ(r_lat::T, zz::T, zl::T) where T<:Number -> float(T)\n\nCompute the zeta function.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.exponential-Tuple{Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.exponential","text":"exponential(h::Number) -> Float64\n\nCompute the atmospheric density [kg / m³] at the altitude h [m] above the ellipsoid using the exponential atmospheric model:\n\n ┌ ┐\n │ h - h₀ │\nρ(h) = ρ₀ . exp │ - ──────── │ ,\n │ H │\n └ ┘\n\nin which ρ₀, h₀, and H are parameters obtained from tables that depend only on h.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.jb2008-Tuple{DateTime, Number, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.jb2008","text":"jb2008(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}\njb2008(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}\n\nCompute the atmospheric density using the Jacchia-Bowman 2008 (JB2008) model.\n\nThis model is a product of the Space Environment Technologies, please, refer to the following website for more information:\n\nhttp://sol.spacenvironment.net/JB2008/\n\nIf we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().\n\nArguments\n\njd::Number: Julian day to compute the model.\ninstant::DateTime: Instant to compute the model represent using DateTime.\nϕ_gd: Geodetic latitude [rad].\nλ: Longitude [rad].\nh: Altitude [m].\nF10: 10.7-cm solar flux [sfu] obtained 1 day before jd.\nF10ₐ: 10.7-cm averaged solar flux using a 81-day window centered on input time obtained 1 day before jd.\nS10: EUV index (26-34 nm) scaled to F10.7 obtained 1 day before jd.\nS10ₐ: EUV 81-day averaged centered index obtained 1 day before jd.\nM10: MG2 index scaled to F10.7 obtained 2 days before jd.\nM10ₐ: MG2 81-day averaged centered index obtained 2 day before jd.\nY10: Solar X-ray & Ly-α index scaled to F10.7 obtained 5 days before jd.\nY10ₐ: Solar X-ray & Ly-α 81-day averaged centered index obtained 5 days before jd.\nDstΔTc: Temperature variation related to the Dst.\n\nReturns\n\nJB2008Output{Float64}: Structure containing the results obtained from the model.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.jr1971-Tuple{DateTime, Number, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.jr1971","text":"jr1971(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}\njr1971(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}\n\nCompute the atmospheric density using the Jacchia-Roberts 1971 model.\n\nIf we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().\n\nArguments\n\njd::Number: Julian day to compute the model.\ninstant::DateTime: Instant to compute the model represent using DateTime.\nϕ_gd::Number: Geodetic latitude [rad].\nλ::Number: Longitude [rad].\nh::Number: Altitude [m].\nF10::Number: 10.7-cm solar flux [sfu].\nF10ₐ::Number: 10.7-cm averaged solar flux, 81-day centered on input time [sfu].\nKp::Number: Kp geomagnetic index with a delay of 3 hours.\n\nReturns\n\nJR1971Output{Float64}: Structure containing the results obtained from the model.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.nrlmsise00-Tuple{DateTime, Number, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.nrlmsise00","text":"nrlmsise00(instant::DateTime, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}\nnrlmsise00(jd::Number, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}\n\nCompute the atmospheric density using the NRLMSISE-00 model.\n\nIf we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().\n\nArguments\n\ninstant::DateTime: Instant to compute the model represent using DateTime.\njd::Number: Julian day to compute the model.\nh::Number: Altitude [m].\nϕ_gd::Number: Geodetic latitude [rad].\nλ::Number: Longitude [rad].\nF10ₐ::Number: 10.7-cm averaged solar flux, 90-day centered on input time [sfu].\nF10::Number: 10.7-cm solar flux [sfu].\nap::Union{Number, AbstractVector}: Magnetic index, see the section AP for more information.\n\nKeywords\n\nflags::Nrlmsise00Flags: A list of flags to configure the model. For more information, see [Nrlmsise00Flags]@(ref). (Default = Nrlmsise00Flags())\ninclude_anomalous_oxygen::Bool: If true, the anomalous oxygen density will be included in the total density computation. (Default = true)\nP::Union{Nothing, Matrix}: If the user passes a matrix with dimensions equal to or greater than 8 × 4, it will be used when computing the Legendre associated functions, reducing allocations and improving the performance. If it is nothing, the matrix is allocated inside the function. (Default nothing)\n\nReturns\n\nNrlmsise00Output{Float64}: Structure containing the results obtained from the model.\n\nAP\n\nThe input variable ap contains the magnetic index. It can be a Number or an AbstractVector.\n\nIf ap is a number, it must contain the daily magnetic index.\n\nIf ap is an AbstractVector, it must be a vector with 7 dimensions as described below:\n\nIndex Description\n1 Daily AP.\n2 3 hour AP index for current time.\n3 3 hour AP index for 3 hours before current time.\n4 3 hour AP index for 6 hours before current time.\n5 3 hour AP index for 9 hours before current time.\n6 Average of eight 3 hour AP indices from 12 to 33 hours prior to current time.\n7 Average of eight 3 hour AP indices from 36 to 57 hours prior to current time.\n\nExtended Help\n\nThe densities of O, H, and N are set to 0 below 72.5 km.\nThe exospheric temperature is set to global average for altitudes below 120 km. The 120 km gradient is left at global average value for altitudes below 72.5 km.\nAnomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (> 500 km) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term Anomalous Oxygen, since their individual variations are not presently separable with the drag data used to define this model component.\n\nNotes on Input Variables\n\nF10 and F10ₐ values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values:\n\nftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/\n\nF10, F10ₐ, and ap effects are neither large nor well established below 80 km and these parameters should be set to 150, 150, and 4 respectively.\n\nIf include_anomalous_oxygen is false, the total_density field in the output is the sum of the mass densities of the species He, O, N₂, O₂, Ar, H, and N, but does not include anomalous oxygen.\n\nIf include_anomalous_oxygen is false, the total_density field in the output is the effective total mass density for drag and is the sum of the mass densities of all species in this model including the anomalous oxygen.\n\n\n\n\n\n","category":"method"},{"location":"man/jb2008/#Jacchia-Bowman-2008","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"","category":"section"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"CurrentModule = SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"using SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"This is an empirical thermospheric density model based on the Jacchia theory. It was published in:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"Bowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y., Lin, C. S., Burke, W. J (2008). A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In the proeceeding of the AIAA/AAS Astrodynamics Specialist Conference, Honolulu, Hawaii.","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"For more information, visit http://sol.spacenvironment.net/jb2008.","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"In this package, we can evaluate the model using the following functions:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"AtmosphericModels.jb2008(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}\nAtmosphericModels.jb2008(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"where:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"jd::Number: Julian day to compute the model.\ninstant::DateTime: Instant to compute the model represent using DateTime.\nϕ_gd: Geodetic latitude [rad].\nλ: Longitude [rad].\nh: Altitude [m].\nF10: 10.7-cm solar flux [sfu] obtained 1 day before jd.\nF10ₐ: 10.7-cm averaged solar flux using a 81-day window centered on input time obtained 1 day before jd.\nS10: EUV index (26-34 nm) scaled to F10.7 obtained 1 day before jd.\nS10ₐ: EUV 81-day averaged centered index obtained 1 day before jd.\nM10: MG2 index scaled to F10.7 obtained 2 days before jd.\nM10ₐ: MG2 81-day averaged centered index obtained 2 day before jd.\nY10: Solar X-ray & Ly-α index scaled to F10.7 obtained 5 days before jd.\nY10ₐ: Solar X-ray & Ly-α 81-day averaged centered index obtained 5 days before jd.\nDstΔTc: Temperature variation related to the Dst.","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"These functions return an object of type JB2008Output{Float64} that contains the following fields:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"total_density::T: Total atmospheric density [1 / m³].\ntemperature::T: Temperature at the selected position [K].\nexospheric_temperature::T: Exospheric temperature [K].\nN2_number_density::T: Number density of N₂ [1 / m³].\nO2_number_density::T: Number density of O₂ [1 / m³].\nO_number_density::T: Number density of O [1 / m³].\nAr_number_density::T: Number density of Ar [1 / m³].\nHe_number_density::T: Number density of He [1 / m³].\nH_number_density::T: Number density of H [1 / m³].","category":"page"},{"location":"man/jb2008/#Examples","page":"Jacchia-Bowman 2008","title":"Examples","text":"","category":"section"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"AtmosphericModels.jb2008(\n DateTime(\"2022-06-19T18:35:00\"),\n deg2rad(-22),\n deg2rad(-45),\n 700e3,\n 79,\n 73.5,\n 55.1,\n 53.8,\n 78.9,\n 73.3,\n 80.2,\n 71.7,\n 50\n)","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"SpaceIndices.init()\n\nAtmosphericModels.jb2008(DateTime(\"2022-06-19T18:35:00\"), deg2rad(-22), deg2rad(-45), 700e3)","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"If we use the automatic space index fetching mechanism, it is possible to obtain the fetched values by turning on the debugging logs according to the Julia documentation:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"using Logging\n\nwith_logger(ConsoleLogger(stderr, Logging.Debug)) do\n AtmosphericModels.jb2008(DateTime(\"2022-06-19T18:35:00\"), deg2rad(-22), deg2rad(-45), 700e3)\nend","category":"page"},{"location":"man/jr1971/#Jacchia-Roberts-1971","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"","category":"section"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"CurrentModule = SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"using SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"This is an analytic atmospheric model based on the Jacchia's 1970 model. It was published in:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"Roberts, C. E (1971). An analytic model for upper atmosphere densities based upon Jacchia's 1970 models. Celestial mechanics, Vol. 4 (3-4), p. 368-377, DOI: 10.1007/BF01231398.","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"Although it is old, this model is still used for some applications, like computing the estimated reentry time for an object on low Earth orbits.","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"In this package, we can evaluate the model using the following functions:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"AtmosphericModels.jr1971(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}\nAtmosphericModels.jr1971(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"where:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"jd::Number: Julian day to compute the model.\ninstant::DateTime: Instant to compute the model represent using DateTime.\nϕ_gd::Number: Geodetic latitude [rad].\nλ::Number: Longitude [rad].\nh::Number: Altitude [m].\nF10::Number: 10.7-cm solar flux [sfu].\nF10ₐ::Number: 10.7-cm averaged solar flux, 81-day centered on input time [sfu].\nKp::Number: Kp geomagnetic index with a delay of 3 hours.","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"This function return an object of type JR1971Output{Float64} that contains the following fields:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"total_density::T: Total atmospheric density [1 / m³].\ntemperature::T: Temperature at the selected position [K].\nexospheric_temperature::T: Exospheric temperature [K].\nN2_number_density::T: Number density of N₂ [1 / m³].\nO2_number_density::T: Number density of O₂ [1 / m³].\nO_number_density::T: Number density of O [1 / m³].\nAr_number_density::T: Number density of Ar [1 / m³].\nHe_number_density::T: Number density of He [1 / m³].\nH_number_density::T: Number density of H [1 / m³].","category":"page"},{"location":"man/jr1971/#Examples","page":"Jacchia-Roberts 1971","title":"Examples","text":"","category":"section"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"AtmosphericModels.jr1971(\n DateTime(\"2018-06-19T18:35:00\"),\n deg2rad(-22),\n deg2rad(-45),\n 700e3,\n 79,\n 73.5,\n 1.34\n)","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"SpaceIndices.init()\n\nAtmosphericModels.jr1971(DateTime(\"2022-06-19T18:35:00\"), deg2rad(-22), deg2rad(-45), 700e3)","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"If we use the automatic space index fetching mechanism, it is possible to obtain the fetched values by turning on the debugging logs according to the Julia documentation:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"using Logging\n\nwith_logger(ConsoleLogger(stderr, Logging.Debug)) do\n AtmosphericModels.jr1971(DateTime(\"2022-06-19T18:35:00\"), deg2rad(-22), deg2rad(-45), 700e3)\nend","category":"page"},{"location":"man/nrlmsise00/#NRLMSISE-00","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"","category":"section"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"CurrentModule = SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"using SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"The NRLMSISE-00 empirical atmosphere model was developed by Mike Picone, Alan Hedin, and Doug Drob based on the MSISE90 model:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"Picone, J. M., Hedin, A. E., Drob, D. P., Aikin, A. C (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, Vol. 107 (A12), p. SIA 15-1 – SIA 15-16, DOI: 10.1029/2002JA009430.","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"In this package, we can compute this model using the following functions:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"AtmosphericModels.nrlmsise00(instant::DateTime, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}\nAtmosphericModels.nrlmsise00(jd::Number, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"where","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"instant::DateTime: Instant to compute the model represent using DateTime.\njd::Number: Julian day to compute the model.\nh::Number: Altitude [m].\nϕ_gd::Number: Geodetic latitude [rad].\nλ::Number: Longitude [rad].\nF10ₐ::Number: 10.7-cm averaged solar flux, 90-day centered on input time [sfu].\nF10::Number: 10.7-cm solar flux [sfu].\nap::Union{Number, AbstractVector}: Magnetic index, see the section AP for more information.","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"The following keywords are available:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"flags::Nrlmsise00Flags: A list of flags to configure the model. For more information, see AtmosphericModels.Nrlmsise00Flags. (Default = Nrlmsise00Flags())\ninclude_anomalous_oxygen::Bool: If true, the anomalous oxygen density will be included in the total density computation. (Default = true)\nP::Union{Nothing, Matrix}: If the user passes a matrix with dimensions equal to or greater than 8 × 4, it will be used when computing the Legendre associated functions, reducing allocations and improving the performance. If it is nothing, the matrix is allocated inside the function. (Default nothing)","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"These functions return an object of type Nrlmsise00Output{Float64} that contains the following fields:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"total_density::T: Total mass density [kg / m³].\ntemperature: Temperature at the selected altitude [K].\nexospheric_temperature: Exospheric temperature [K].\nN_number_density: Nitrogen number density [1 / m³].\nN2_number_density: N₂ number density [1 / m³].\nO_number_density: Oxygen number density [1 / m³].\naO_number_density: Anomalous Oxygen number density [1 / m³].\nO2_number_density: O₂ number density [1 / m³].\nH_number_density: Hydrogen number density [1 / m³].\nHe_number_density: Helium number density [1 / m³].\nAr_number_density: Argon number density [1 / m³].","category":"page"},{"location":"man/nrlmsise00/#AP","page":"NRLMSISE-00","title":"AP","text":"","category":"section"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"The input variable ap contains the magnetic index. It can be a Number or an AbstractVector.","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"If ap is a number, it must contain the daily magnetic index.","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"If ap is an AbstractVector, it must be a vector with 7 dimensions as described below:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"Index Description\n1 Daily AP.\n2 3 hour AP index for current time.\n3 3 hour AP index for 3 hours before current time.\n4 3 hour AP index for 6 hours before current time.\n5 3 hour AP index for 9 hours before current time.\n6 Average of eight 3 hour AP indices from 12 to 33 hours prior to current time.\n7 Average of eight 3 hour AP indices from 36 to 57 hours prior to current time.","category":"page"},{"location":"man/nrlmsise00/#Examples","page":"NRLMSISE-00","title":"Examples","text":"","category":"section"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"AtmosphericModels.nrlmsise00(\n DateTime(\"2018-06-19T18:35:00\"),\n 700e3,\n deg2rad(-22),\n deg2rad(-45),\n 73.5,\n 79,\n 5.13\n)","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"SpaceIndices.init()\n\nAtmosphericModels.nrlmsise00(DateTime(\"2018-06-19T18:35:00\"), 700e3, deg2rad(-22), deg2rad(-45))","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"If we use the automatic space index fetching mechanism, it is possible to obtain the fetched values by turning on the debugging logs according to the Julia documentation:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"using Logging\n\nwith_logger(ConsoleLogger(stderr, Logging.Debug)) do\n AtmosphericModels.nrlmsise00(DateTime(\"2018-06-19T18:35:00\"), 700e3, deg2rad(-22), deg2rad(-45))\nend","category":"page"},{"location":"man/exponential/#Exponential-Atmospheric-Model","page":"Exponential","title":"Exponential Atmospheric Model","text":"","category":"section"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"CurrentModule = SatelliteToolboxAtmosphericModels\nDocTestSetup = quote\n using SatelliteToolboxAtmosphericModels\nend","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"using SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"This model assumes we can compute the atmospheric density by:","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"rho(h) = rho_0 cdot exp leftlbrace - frach - h_0H rightrbrace","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"where rho_0, h_0, and H are parameters obtained from tables. Reference [1] provides a discretization of those parameters based on the selected height h that was obtained after evaluation of some accurate models.","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"In this package, we can compute the model using the following function:","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"AtmosphericModels.exponential(h::T) where T<:Number -> Float64","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"where h is the desired height [m].","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"warning: Warning\nNotice that this model does not consider important effects such as the Sun activity, the geomagnetic activity, the local time at the desired location, and others. Hence, although this can be used for fast evaluations, the accuracy is not good.","category":"page"},{"location":"man/exponential/#Examples","page":"Exponential","title":"Examples","text":"","category":"section"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"AtmosphericModels.exponential(700e3)","category":"page"},{"location":"man/exponential/#References","page":"Exponential","title":"References","text":"","category":"section"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"[1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. Microcosm Press, Hawthorn, CA, USA.","category":"page"},{"location":"#SatelliteToolboxAtmosphericModels.jl","page":"Home","title":"SatelliteToolboxAtmosphericModels.jl","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"This package implements atmospheric models for the SatelliteToolbox.jl ecosystem. Currently, the following models are available:","category":"page"},{"location":"","page":"Home","title":"Home","text":"Exponential atmospheric model according to [1];\nJacchia-Roberts 1971;\nJacchia-Bowman 2008; and\nNRLMSISE-00.","category":"page"},{"location":"#Installation","page":"Home","title":"Installation","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"julia> using Pkg\njulia> Pkg.install(\"SatelliteToolboxAtmosphericModels\")","category":"page"},{"location":"#References","page":"Home","title":"References","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"[1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. Microcosm Press, Hawthorn, CA, USA.","category":"page"}] +[{"location":"lib/library/#Library","page":"Library","title":"Library","text":"","category":"section"},{"location":"lib/library/","page":"Library","title":"Library","text":"Documentation for SatelliteToolboxAtmosphericModels.jl.","category":"page"},{"location":"lib/library/","page":"Library","title":"Library","text":"Modules = [SatelliteToolboxAtmosphericModels, AtmosphericModels]\nPrivate = true","category":"page"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_H","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_H","text":"const _EXPONENTIAL_ATMOSPHERE_H\n\nScale height for the exponential atmospheric model [km].\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_H₀","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_H₀","text":"const _EXPONENTIAL_ATMOSPHERE_H₀\n\nBase altitude for the exponential atmospheric model [km].\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_ρ₀","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._EXPONENTIAL_ATMOSPHERE_ρ₀","text":"const _EXPONENTIAL_ATMOSPHERE_ρ₀\n\nNominal density for the exponential atmospheric model [kg / m³].\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._JR1971_CONSTANTS","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._JR1971_CONSTANTS","text":"const _JR1971_CONSTANTS\n\nConstants for the Jacchia-Roberts 1971 atmospheric model.\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._JR1971_ROOT_GUESS","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._JR1971_ROOT_GUESS","text":"const _JR1971_ROOT_GUESS\n\nFirst guess to compute the roots of a polynomial to find the density below 125 km.\n\n\n\n\n\n","category":"constant"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.JB2008Output","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.JB2008Output","text":"struct JB2008Output{T<:Number}\n\nOutput of the atmospheric model Jacchia-Bowman 2008.\n\nFields\n\ntotal_density::T: Total atmospheric density [1 / m³].\ntemperature::T: Temperature at the selected position [K].\nexospheric_temperature::T: Exospheric temperature [K].\nN2_number_density::T: Number density of N₂ [1 / m³].\nO2_number_density::T: Number density of O₂ [1 / m³].\nO_number_density::T: Number density of O [1 / m³].\nAr_number_density::T: Number density of Ar [1 / m³].\nHe_number_density::T: Number density of He [1 / m³].\nH_number_density::T: Number density of H [1 / m³].\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.JR1971Output","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.JR1971Output","text":"struct JR1971Output{T<:Number}\n\nOutput of the atmospheric model Jacchia-Roberts 1971.\n\nFields\n\ntotal_density::T: Total atmospheric density [1 / m³].\ntemperature::T: Temperature at the selected position [K].\nexospheric_temperature::T: Exospheric temperature [K].\nN2_number_density::T: Number density of N₂ [1 / m³].\nO2_number_density::T: Number density of O₂ [1 / m³].\nO_number_density::T: Number density of O [1 / m³].\nAr_number_density::T: Number density of Ar [1 / m³].\nHe_number_density::T: Number density of He [1 / m³].\nH_number_density::T: Number density of H [1 / m³].\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Flags","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Flags","text":"struct Nrlmsise00Flags\n\nFlags to configure NRLMSISE-00.\n\nFields\n\nF10_Mean::Bool: F10.7 effect on mean.\ntime_independent::Bool: Independent of time.\nsym_annual::Bool: Symmetrical annual.\nsym_semiannual::Bool: Symmetrical semiannual.\nasym_annual::Bool: Asymmetrical annual.\nasyn_semiannual::Bool: Asymmetrical semiannual.\ndiurnal::Bool: Diurnal.\nsemidiurnal::Bool: Semidiurnal.\ndaily_ap::Bool: Daily AP.\nall_ut_long_effects::Bool: All UT/long effects.\nlongitudinal::Bool: Longitudinal.\nut_mixed_ut_long::Bool: UT and mixed UT/long.\nmixed_ap_ut_long::Bool: Mixed AP/UT/long.\nterdiurnal::Bool: Terdiurnal.\ndepartures_from_eq::Bool: Departures from diffusive equilibrium.\nall_tinf_var::Bool: All TINF variations.\nall_tlb_var::Bool: All TLB variations.\nall_tn1_var::Bool: All TN1 variations.\nall_s_var::Bool: All S variations.\nall_tn2_var::Bool: All TN2 variations.\nall_nlb_var::Bool: All NLB variations.\nall_tn3_var::Bool: All TN3 variations.\nturbo_scale_height::Bool: Turbo scale height variations.\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Output","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Output","text":"struct Nrlmsise00Output{T<:Number}\n\nOutput structure for NRLMSISE00 model.\n\nFields\n\ntotal_density::T: Total mass density [kg / m³].\ntemperature: Temperature at the selected altitude [K].\nexospheric_temperature: Exospheric temperature [K].\nN_number_density: Nitrogen number density [1 / m³].\nN2_number_density: N₂ number density [1 / m³].\nO_number_density: Oxygen number density [1 / m³].\naO_number_density: Anomalous Oxygen number density [1 / m³].\nO2_number_density: O₂ number density [1 / m³].\nH_number_density: Hydrogen number density [1 / m³].\nHe_number_density: Helium number density [1 / m³].\nAr_number_density: Argon number density [1 / m³].\n\nRemarks\n\nAnomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (> 500 km) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term Anomalous Oxygen, since their individual variations are not presently separable with the drag data used to define this model component.\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure","text":"struct Nrlmsise00Structure{T<:Number, T_AP<:Union{Number, AbstractVector}}\n\nStructure with the configuration parameters for NRLMSISE-00 model. T is the floating-number type and T_AP is the type of the AP information, which can be a Number or AbstractVector.\n\n\n\n\n\n","category":"type"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor-Union{Tuple{T}, NTuple{4, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor","text":"_ccor(h::T, r::T, h₁::T, zh::T) where T<:Number -> T\n\nCompute the chemistry / dissociation correction for MSIS models.\n\nArguments\n\nh::Number: Altitude.\nr::Number: Target ratio.\nh₁::Number: Transition scale length.\nzh::Number: Altitude of 1/2 r.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor2-Union{Tuple{T}, NTuple{5, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._ccor2","text":"_ccor2(alt::T, r::T, h₁::T, zh::T, h₂::T) where T<:Number -> T\n\nCompute the O and O₂ chemistry / dissociation correction for MSIS models.\n\nArguments\n\nh::Number: Altitude.\nr::Number: Target ration.\nh₁::Number: Transition scale length.\nzh::Number: Altitude of 1/2 r.\nh₂::Number: Transition scale length 2.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._densm-Union{Tuple{T}, Tuple{T, T, T, T, T, NTuple{4, T}, Tuple{T, T}, NTuple{5, T}, Tuple{T, T}}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._densm","text":"_densm(h::T, d0::T, xm::T, tz::T, r_lat::T, g_lat::T, tn2::NTuple{N2, T}, tgn2::NTuple{2, T}, tn3::NTuple{N3, T}, tgn3::NTuple{2, T}) where {N2<:Interger, N3<:Integer, T<:Number} -> float(T), float(T)\n\nCompute the temperature and density profiles for the lower atmosphere.\n\nnote: Note\nThis function returns the density if xm is not 0, or the temperature otherwise.\n\nArguments\n\nh::T: Altitude [km].\nd₀::T: Reference density, returned if h > _ZN2[1].\nxm::T: Species molecular weight [ ].\ng_lat::T: Reference gravity at desired latitude [cm / s²].\nr_lat::T: Reference radius at desired latitude [km].\ntn2::NTuple{N2, T}: Temperature at the nodes for ZN2 scale [K].\ntgn2::NTuple{N2, T}: Temperature gradients at the end nodes for ZN2 scale.\ntn3::NTuple{N3, T}: Temperature at the nodes for ZN3 scale [K].\ntgn3::NTuple{N3, T}: Temperature gradients at the end nodes for ZN3 scale.\n\nReturns\n\nT: Density [1 / cm³] is xm is not 0, or the temperature [K] otherwise.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._densu-Union{Tuple{T}, Tuple{T, T, T, T, T, T, T, T, T, T, NTuple{5, T}, Tuple{T, T}}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._densu","text":"_densu(h::T, dlb::T, tinf::T, tlb::T, xm::T, α::T, zlb::T, s2::T, g_lat::T, r_lat::T, tn1::NTuple{5, T}, tgn1::NTuple{2, T}) where T<:Number -> T, NTuple{5, T}, NTuple{2, T}\n\nCompute the density [1 / cm³] or temperature [K] profiles according to the new lower thermo polynomial.\n\nnote: Note\nThis function returns the density if xm is not 0, or the temperature otherwise.\n\nArguments\n\nh::T: Altitude [km].\ndlb::T: Density at lower boundary [1 / cm³].\ntinf::T: Exospheric temperature [K].\ntlb::T: Temperature at lower boundary [K].\nxm::T: Species molecular weight [ ].\nα::T: Thermal diffusion coefficient.\nzlb::T: Altitude at lower boundary [km].\ns2::T: Slope.\ng_lat::T: Reference gravity at the latitude [cm / s²].\nr_lat::T: Reference radius at the latitude [km].\ntn1::NTuple{5, T}: Temperature at nodes for ZN1 scale [K].\ntgn1::NTuple{2, T}: Temperature gradients at end nodes for ZN1 scale.\n\nReturns\n\nT: Density [1 / cm³] is xm is not 0, or the temperature [K] otherwise.\nNTuple{5, T}: Updated tn1.\nNTuple{2, T}: Updated tgn1.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._dnet-Union{Tuple{T}, NTuple{5, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._dnet","text":"_dnet(dd::T, dm::T, zhm::T, xmm::T, xm::T) where T<:Number -> T\n\nCompute the turbopause correction for MSIS models, returning the combined density.\n\nArguments\n\ndd::T: Diffusive density.\ndm::T: Full mixed density.\nzhm::T: Transition scale length.\nxmm::T: Full mixed molecular weight.\nxm::T: Species molecular weight.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._glob7s-Union{Tuple{T}, Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}, AbstractVector{T}}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._glob7s","text":"_glob7s(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number -> T\n\nCompute the function G(L) with lower atmosphere parameters p and the NRLMSISE-00 structure nrlmsise00d.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._globe7-Union{Tuple{T}, Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}, AbstractVector{T}}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._globe7","text":"_globe7(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number -> Nrlmsise00Structure{T}, T\n\nCompute the function G(L) with upper thermosphere parameters p and the NRLMSISE-00 structure nrlmsise00.\n\nnote: Note\nThe variables apt and apdf inside nrlmsise00d can be modified inside this function.\n\nReturns\n\nNrlmsise00Structure{T}: Modified structure nrlmsise00d.\nT: Result of G(L).\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._gravity_and_effective_radius-Tuple{T} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._gravity_and_effective_radius","text":"_gravity_and_effective_radius(ϕ_gd::T) where T<:Number -> T, T\n\nCompute the gravity [cm / s²] and effective radius [km] at the geodetic latitude ϕ_gd [°].\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7-Union{Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}}, Tuple{T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7","text":"_gtd7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}\n\nCompute the temperatures and densities using the information inside the structure nrlmsise00d without including the anomalous oxygen in the total density.\n\nReturns\n\nNrlmsise00Structure{T}: Modified structure nrlmsise00d.\nNrlmsise00Output{T}: Structure with the output information.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7d-Union{Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}}, Tuple{T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._gtd7d","text":"_gtd7d(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}\n\nCompute the temperatures and densities using the information inside the structure nrlmsise00d including the anomalous oxygen in the total density.\n\nReturns\n\nNrlmsise00Structure{T}: Modified structure nrlmsise00d.\nNrlmsise00Output{T}: Structure with the output information.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._gts7-Union{Tuple{SatelliteToolboxAtmosphericModels.AtmosphericModels.Nrlmsise00Structure{T}}, Tuple{T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._gts7","text":"_gts7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T}\n\nCompute the temperatures and densities using the information inside the structure nrlmsise00d and including the anomalous oxygen in the total density for altitudes higher than 72.5 km (thermospheric portion of NRLMSISE-00).\n\nReturns\n\nNrlmsise00Structure{T}: Modified structure nrlmsise00d.\nNrlmsise00Output{T}: Structure with the output information.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._g₀-Tuple{Number, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._g₀","text":"_g0(a::Number, p::AbstractVector)\n\nCompute g₀ function (see Eq. A24d) using the coefficients abs_p25 = abs(p[25]) and p26 = p[26].\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._scale_height-Union{Tuple{T}, NTuple{5, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._scale_height","text":"_scale_height(h::T, xm::T, temp::T, g_lat::T, r_lat::T) where T<:Number -> T\n\nCompute the scale height.\n\nArguments\n\nh::T: Altitude [km].\nxm::T: Species molecular weight [ ].\ntemp::T: Temperature [K].\ng_lat::T: Reference gravity at desired latitude [cm / s²].\nr_lat::T: Reference radius at desired latitude [km].\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._sg₀-Tuple{Number, AbstractVector, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._sg₀","text":"_sg₀(ex::Number, ap::AbstractVector, abs_p25::Number, p26::Number)\n\nCompute the sg₀ function (see Eq. A24a) using the ap vector and the coefficients abs_p25 and p26.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._spline-Union{Tuple{T}, Tuple{N}, Tuple{Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, T}} where {N, T<:Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._spline","text":"_spline(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y::NTuple{N, T}, xᵢ::T) where {N, T<:Number} -> float(T)\n\nCompute the interpolation of the cubic spline y(x) with second derivatives ∂²y at xᵢ.\n\nnote: Note\nThis function was adapted from Numerical Recipes.\n\nArguments\n\nx::NTuple{N, T}: X components of the tabulated function in ascending order.\ny::NTuple{N, T}: Y components of the tabulated function evaluated at x.\n∂²y::NTuple{N, T}: Second derivatives of y(x) ∂²y/∂x² evaluated at x.\nxᵢ::T: Point to compute the interpolation.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∂²-Union{Tuple{T}, Tuple{N}, Tuple{Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, T, T}} where {N, T<:Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∂²","text":"_spline_∂²(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y₁::T, ∂²yₙ::T) where {N, T<:Number} -> NTuple{N, T}\n\nCompute the 2nd derivatives of the cubic spline interpolation y(x) given the 2nd derivatives at x[1] (∂²y₁) and at x[N] (∂²yₙ). This functions return a tuple with the evaluated 2nd derivatives at each point in x.\n\nnote: Note\nThis function was adapted from Numerical Recipes.\n\nnote: Note\nValues higher than 0.99e30 in the 2nd derivatives at the borders (∂²y₁ and ∂²yₙ) are interpreted as 0.\n\nArguments\n\nx::NTuple{N, T}: X components of the tabulated function in ascending order.\ny::NTuple{N, T}: Y components of the tabulated function evaluated at x.\n∂²y₁::T: Second derivative of y(x) ∂²y/∂x² evaluated at x[1].\n∂²yₙ::T: Second derivative of y(x) ∂²y/∂x² evaluated at x[N].\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∫-Union{Tuple{T}, Tuple{N}, Tuple{Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, Tuple{Vararg{T, N}}, T}} where {N, T<:Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._spline_∫","text":"_spline_∫(x::NTuple{N, T}, y::NTuple{N, T}, ∂²y::NTuple{N, T}, xf::Number) where {N, T<:Number} -> float(T)\n\nCompute the integral of the cubic spline function y(x) from x[1] to xf, where the function second derivatives evaluated at x are ∂²y.\n\nArguments\n\nx::NTuple{N, T}: X components of the tabulated function in ascending order.\ny::NTuple{N, T}: Y components of the tabulated function evaluated at x.\n∂²y::NTuple{N, T}: Second derivatives of y(x) ∂²y/∂x² evaluated at x.\nxf::Number: Abscissa endpoint for integration.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels._ζ-Union{Tuple{T}, Tuple{T, T, T}} where T<:Number","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels._ζ","text":"_ζ(r_lat::T, zz::T, zl::T) where T<:Number -> float(T)\n\nCompute the zeta function.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.exponential-Tuple{Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.exponential","text":"exponential(h::Number) -> Float64\n\nCompute the atmospheric density [kg / m³] at the altitude h [m] above the ellipsoid using the exponential atmospheric model:\n\n ┌ ┐\n │ h - h₀ │\nρ(h) = ρ₀ . exp │ - ──────── │ ,\n │ H │\n └ ┘\n\nin which ρ₀, h₀, and H are parameters obtained from tables that depend only on h.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.jb2008-Tuple{DateTime, Number, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.jb2008","text":"jb2008(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}\njb2008(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}\n\nCompute the atmospheric density using the Jacchia-Bowman 2008 (JB2008) model.\n\nThis model is a product of the Space Environment Technologies, please, refer to the following website for more information:\n\nhttp://sol.spacenvironment.net/JB2008/\n\nIf we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().\n\nArguments\n\njd::Number: Julian day to compute the model.\ninstant::DateTime: Instant to compute the model represent using DateTime.\nϕ_gd: Geodetic latitude [rad].\nλ: Longitude [rad].\nh: Altitude [m].\nF10: 10.7-cm solar flux [sfu] obtained 1 day before jd.\nF10ₐ: 10.7-cm averaged solar flux using a 81-day window centered on input time obtained 1 day before jd.\nS10: EUV index (26-34 nm) scaled to F10.7 obtained 1 day before jd.\nS10ₐ: EUV 81-day averaged centered index obtained 1 day before jd.\nM10: MG2 index scaled to F10.7 obtained 2 days before jd.\nM10ₐ: MG2 81-day averaged centered index obtained 2 day before jd.\nY10: Solar X-ray & Ly-α index scaled to F10.7 obtained 5 days before jd.\nY10ₐ: Solar X-ray & Ly-α 81-day averaged centered index obtained 5 days before jd.\nDstΔTc: Temperature variation related to the Dst.\n\nReturns\n\nJB2008Output{Float64}: Structure containing the results obtained from the model.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.jr1971-Tuple{DateTime, Number, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.jr1971","text":"jr1971(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}\njr1971(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}\n\nCompute the atmospheric density using the Jacchia-Roberts 1971 model.\n\nIf we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().\n\nArguments\n\njd::Number: Julian day to compute the model.\ninstant::DateTime: Instant to compute the model represent using DateTime.\nϕ_gd::Number: Geodetic latitude [rad].\nλ::Number: Longitude [rad].\nh::Number: Altitude [m].\nF10::Number: 10.7-cm solar flux [sfu].\nF10ₐ::Number: 10.7-cm averaged solar flux, 81-day centered on input time [sfu].\nKp::Number: Kp geomagnetic index with a delay of 3 hours.\n\nReturns\n\nJR1971Output{Float64}: Structure containing the results obtained from the model.\n\n\n\n\n\n","category":"method"},{"location":"lib/library/#SatelliteToolboxAtmosphericModels.AtmosphericModels.nrlmsise00-Tuple{DateTime, Number, Number, Number}","page":"Library","title":"SatelliteToolboxAtmosphericModels.AtmosphericModels.nrlmsise00","text":"nrlmsise00(instant::DateTime, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}\nnrlmsise00(jd::Number, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}\n\nCompute the atmospheric density using the NRLMSISE-00 model.\n\nIf we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().\n\nArguments\n\ninstant::DateTime: Instant to compute the model represent using DateTime.\njd::Number: Julian day to compute the model.\nh::Number: Altitude [m].\nϕ_gd::Number: Geodetic latitude [rad].\nλ::Number: Longitude [rad].\nF10ₐ::Number: 10.7-cm averaged solar flux, 90-day centered on input time [sfu].\nF10::Number: 10.7-cm solar flux [sfu].\nap::Union{Number, AbstractVector}: Magnetic index, see the section AP for more information.\n\nKeywords\n\nflags::Nrlmsise00Flags: A list of flags to configure the model. For more information, see [Nrlmsise00Flags]@(ref). (Default = Nrlmsise00Flags())\ninclude_anomalous_oxygen::Bool: If true, the anomalous oxygen density will be included in the total density computation. (Default = true)\nP::Union{Nothing, Matrix}: If the user passes a matrix with dimensions equal to or greater than 8 × 4, it will be used when computing the Legendre associated functions, reducing allocations and improving the performance. If it is nothing, the matrix is allocated inside the function. (Default nothing)\n\nReturns\n\nNrlmsise00Output{Float64}: Structure containing the results obtained from the model.\n\nAP\n\nThe input variable ap contains the magnetic index. It can be a Number or an AbstractVector.\n\nIf ap is a number, it must contain the daily magnetic index.\n\nIf ap is an AbstractVector, it must be a vector with 7 dimensions as described below:\n\nIndex Description\n1 Daily AP.\n2 3 hour AP index for current time.\n3 3 hour AP index for 3 hours before current time.\n4 3 hour AP index for 6 hours before current time.\n5 3 hour AP index for 9 hours before current time.\n6 Average of eight 3 hour AP indices from 12 to 33 hours prior to current time.\n7 Average of eight 3 hour AP indices from 36 to 57 hours prior to current time.\n\nExtended Help\n\nThe densities of O, H, and N are set to 0 below 72.5 km.\nThe exospheric temperature is set to global average for altitudes below 120 km. The 120 km gradient is left at global average value for altitudes below 72.5 km.\nAnomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (> 500 km) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term Anomalous Oxygen, since their individual variations are not presently separable with the drag data used to define this model component.\n\nNotes on Input Variables\n\nF10 and F10ₐ values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values:\n\nftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/\n\nF10, F10ₐ, and ap effects are neither large nor well established below 80 km and these parameters should be set to 150, 150, and 4 respectively.\n\nIf include_anomalous_oxygen is false, the total_density field in the output is the sum of the mass densities of the species He, O, N₂, O₂, Ar, H, and N, but does not include anomalous oxygen.\n\nIf include_anomalous_oxygen is false, the total_density field in the output is the effective total mass density for drag and is the sum of the mass densities of all species in this model including the anomalous oxygen.\n\n\n\n\n\n","category":"method"},{"location":"man/jb2008/#Jacchia-Bowman-2008","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"","category":"section"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"CurrentModule = SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"using SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"This is an empirical thermospheric density model based on the Jacchia theory. It was published in:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"Bowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y., Lin, C. S., Burke, W. J (2008). A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In the proeceeding of the AIAA/AAS Astrodynamics Specialist Conference, Honolulu, Hawaii.","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"For more information, visit http://sol.spacenvironment.net/jb2008.","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"In this package, we can evaluate the model using the following functions:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"AtmosphericModels.jb2008(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}\nAtmosphericModels.jb2008(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΔTc::Number]) -> JB2008Output{Float64}","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"where:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"jd::Number: Julian day to compute the model.\ninstant::DateTime: Instant to compute the model represent using DateTime.\nϕ_gd: Geodetic latitude [rad].\nλ: Longitude [rad].\nh: Altitude [m].\nF10: 10.7-cm solar flux [sfu] obtained 1 day before jd.\nF10ₐ: 10.7-cm averaged solar flux using a 81-day window centered on input time obtained 1 day before jd.\nS10: EUV index (26-34 nm) scaled to F10.7 obtained 1 day before jd.\nS10ₐ: EUV 81-day averaged centered index obtained 1 day before jd.\nM10: MG2 index scaled to F10.7 obtained 2 days before jd.\nM10ₐ: MG2 81-day averaged centered index obtained 2 day before jd.\nY10: Solar X-ray & Ly-α index scaled to F10.7 obtained 5 days before jd.\nY10ₐ: Solar X-ray & Ly-α 81-day averaged centered index obtained 5 days before jd.\nDstΔTc: Temperature variation related to the Dst.","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"These functions return an object of type JB2008Output{Float64} that contains the following fields:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"total_density::T: Total atmospheric density [1 / m³].\ntemperature::T: Temperature at the selected position [K].\nexospheric_temperature::T: Exospheric temperature [K].\nN2_number_density::T: Number density of N₂ [1 / m³].\nO2_number_density::T: Number density of O₂ [1 / m³].\nO_number_density::T: Number density of O [1 / m³].\nAr_number_density::T: Number density of Ar [1 / m³].\nHe_number_density::T: Number density of He [1 / m³].\nH_number_density::T: Number density of H [1 / m³].","category":"page"},{"location":"man/jb2008/#Examples","page":"Jacchia-Bowman 2008","title":"Examples","text":"","category":"section"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"AtmosphericModels.jb2008(\n DateTime(\"2022-06-19T18:35:00\"),\n deg2rad(-22),\n deg2rad(-45),\n 700e3,\n 79,\n 73.5,\n 55.1,\n 53.8,\n 78.9,\n 73.3,\n 80.2,\n 71.7,\n 50\n)","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"SpaceIndices.init()\n\nAtmosphericModels.jb2008(DateTime(\"2022-06-19T18:35:00\"), deg2rad(-22), deg2rad(-45), 700e3)","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"If we use the automatic space index fetching mechanism, it is possible to obtain the fetched values by turning on the debugging logs according to the Julia documentation:","category":"page"},{"location":"man/jb2008/","page":"Jacchia-Bowman 2008","title":"Jacchia-Bowman 2008","text":"using Logging\n\nwith_logger(ConsoleLogger(stderr, Logging.Debug)) do\n AtmosphericModels.jb2008(DateTime(\"2022-06-19T18:35:00\"), deg2rad(-22), deg2rad(-45), 700e3)\nend","category":"page"},{"location":"man/jr1971/#Jacchia-Roberts-1971","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"","category":"section"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"CurrentModule = SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"using SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"This is an analytic atmospheric model based on the Jacchia's 1970 model. It was published in:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"Roberts, C. E (1971). An analytic model for upper atmosphere densities based upon Jacchia's 1970 models. Celestial mechanics, Vol. 4 (3-4), p. 368-377, DOI: 10.1007/BF01231398.","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"Although it is old, this model is still used for some applications, like computing the estimated reentry time for an object on low Earth orbits.","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"In this package, we can evaluate the model using the following functions:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"AtmosphericModels.jr1971(instant::DateTime, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}\nAtmosphericModels.jr1971(jd::Number, ϕ_gd::Number, λ::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64}","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"where:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"jd::Number: Julian day to compute the model.\ninstant::DateTime: Instant to compute the model represent using DateTime.\nϕ_gd::Number: Geodetic latitude [rad].\nλ::Number: Longitude [rad].\nh::Number: Altitude [m].\nF10::Number: 10.7-cm solar flux [sfu].\nF10ₐ::Number: 10.7-cm averaged solar flux, 81-day centered on input time [sfu].\nKp::Number: Kp geomagnetic index with a delay of 3 hours.","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"This function return an object of type JR1971Output{Float64} that contains the following fields:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"total_density::T: Total atmospheric density [1 / m³].\ntemperature::T: Temperature at the selected position [K].\nexospheric_temperature::T: Exospheric temperature [K].\nN2_number_density::T: Number density of N₂ [1 / m³].\nO2_number_density::T: Number density of O₂ [1 / m³].\nO_number_density::T: Number density of O [1 / m³].\nAr_number_density::T: Number density of Ar [1 / m³].\nHe_number_density::T: Number density of He [1 / m³].\nH_number_density::T: Number density of H [1 / m³].","category":"page"},{"location":"man/jr1971/#Examples","page":"Jacchia-Roberts 1971","title":"Examples","text":"","category":"section"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"AtmosphericModels.jr1971(\n DateTime(\"2018-06-19T18:35:00\"),\n deg2rad(-22),\n deg2rad(-45),\n 700e3,\n 79,\n 73.5,\n 1.34\n)","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"SpaceIndices.init()\n\nAtmosphericModels.jr1971(DateTime(\"2022-06-19T18:35:00\"), deg2rad(-22), deg2rad(-45), 700e3)","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"If we use the automatic space index fetching mechanism, it is possible to obtain the fetched values by turning on the debugging logs according to the Julia documentation:","category":"page"},{"location":"man/jr1971/","page":"Jacchia-Roberts 1971","title":"Jacchia-Roberts 1971","text":"using Logging\n\nwith_logger(ConsoleLogger(stderr, Logging.Debug)) do\n AtmosphericModels.jr1971(DateTime(\"2022-06-19T18:35:00\"), deg2rad(-22), deg2rad(-45), 700e3)\nend","category":"page"},{"location":"man/nrlmsise00/#NRLMSISE-00","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"","category":"section"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"CurrentModule = SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"using SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"The NRLMSISE-00 empirical atmosphere model was developed by Mike Picone, Alan Hedin, and Doug Drob based on the MSISE90 model:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"Picone, J. M., Hedin, A. E., Drob, D. P., Aikin, A. C (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, Vol. 107 (A12), p. SIA 15-1 – SIA 15-16, DOI: 10.1029/2002JA009430.","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"In this package, we can compute this model using the following functions:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"AtmosphericModels.nrlmsise00(instant::DateTime, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}\nAtmosphericModels.nrlmsise00(jd::Number, h::Number, ϕ_gd::Number, λ::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64}","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"where","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"instant::DateTime: Instant to compute the model represent using DateTime.\njd::Number: Julian day to compute the model.\nh::Number: Altitude [m].\nϕ_gd::Number: Geodetic latitude [rad].\nλ::Number: Longitude [rad].\nF10ₐ::Number: 10.7-cm averaged solar flux, 90-day centered on input time [sfu].\nF10::Number: 10.7-cm solar flux [sfu].\nap::Union{Number, AbstractVector}: Magnetic index, see the section AP for more information.","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"The following keywords are available:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"flags::Nrlmsise00Flags: A list of flags to configure the model. For more information, see AtmosphericModels.Nrlmsise00Flags. (Default = Nrlmsise00Flags())\ninclude_anomalous_oxygen::Bool: If true, the anomalous oxygen density will be included in the total density computation. (Default = true)\nP::Union{Nothing, Matrix}: If the user passes a matrix with dimensions equal to or greater than 8 × 4, it will be used when computing the Legendre associated functions, reducing allocations and improving the performance. If it is nothing, the matrix is allocated inside the function. (Default nothing)","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"If we omit all space indices, the system tries to obtain them automatically for the selected day jd or instant. However, the indices must be already initialized using the function SpaceIndices.init().","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"These functions return an object of type Nrlmsise00Output{Float64} that contains the following fields:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"total_density::T: Total mass density [kg / m³].\ntemperature: Temperature at the selected altitude [K].\nexospheric_temperature: Exospheric temperature [K].\nN_number_density: Nitrogen number density [1 / m³].\nN2_number_density: N₂ number density [1 / m³].\nO_number_density: Oxygen number density [1 / m³].\naO_number_density: Anomalous Oxygen number density [1 / m³].\nO2_number_density: O₂ number density [1 / m³].\nH_number_density: Hydrogen number density [1 / m³].\nHe_number_density: Helium number density [1 / m³].\nAr_number_density: Argon number density [1 / m³].","category":"page"},{"location":"man/nrlmsise00/#AP","page":"NRLMSISE-00","title":"AP","text":"","category":"section"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"The input variable ap contains the magnetic index. It can be a Number or an AbstractVector.","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"If ap is a number, it must contain the daily magnetic index.","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"If ap is an AbstractVector, it must be a vector with 7 dimensions as described below:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"Index Description\n1 Daily AP.\n2 3 hour AP index for current time.\n3 3 hour AP index for 3 hours before current time.\n4 3 hour AP index for 6 hours before current time.\n5 3 hour AP index for 9 hours before current time.\n6 Average of eight 3 hour AP indices from 12 to 33 hours prior to current time.\n7 Average of eight 3 hour AP indices from 36 to 57 hours prior to current time.","category":"page"},{"location":"man/nrlmsise00/#Examples","page":"NRLMSISE-00","title":"Examples","text":"","category":"section"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"AtmosphericModels.nrlmsise00(\n DateTime(\"2018-06-19T18:35:00\"),\n 700e3,\n deg2rad(-22),\n deg2rad(-45),\n 73.5,\n 79,\n 5.13\n)","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"SpaceIndices.init()\n\nAtmosphericModels.nrlmsise00(DateTime(\"2018-06-19T18:35:00\"), 700e3, deg2rad(-22), deg2rad(-45))","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"If we use the automatic space index fetching mechanism, it is possible to obtain the fetched values by turning on the debugging logs according to the Julia documentation:","category":"page"},{"location":"man/nrlmsise00/","page":"NRLMSISE-00","title":"NRLMSISE-00","text":"using Logging\n\nwith_logger(ConsoleLogger(stderr, Logging.Debug)) do\n AtmosphericModels.nrlmsise00(DateTime(\"2018-06-19T18:35:00\"), 700e3, deg2rad(-22), deg2rad(-45))\nend","category":"page"},{"location":"man/exponential/#Exponential-Atmospheric-Model","page":"Exponential","title":"Exponential Atmospheric Model","text":"","category":"section"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"CurrentModule = SatelliteToolboxAtmosphericModels\nDocTestSetup = quote\n using SatelliteToolboxAtmosphericModels\nend","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"using SatelliteToolboxAtmosphericModels","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"This model assumes we can compute the atmospheric density by:","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"rho(h) = rho_0 cdot exp leftlbrace - frach - h_0H rightrbrace","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"where rho_0, h_0, and H are parameters obtained from tables. Reference [1] provides a discretization of those parameters based on the selected height h that was obtained after evaluation of some accurate models.","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"In this package, we can compute the model using the following function:","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"AtmosphericModels.exponential(h::T) where T<:Number -> Float64","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"where h is the desired height [m].","category":"page"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"warning: Warning\nNotice that this model does not consider important effects such as the Sun activity, the geomagnetic activity, the local time at the desired location, and others. Hence, although this can be used for fast evaluations, the accuracy is not good.","category":"page"},{"location":"man/exponential/#Examples","page":"Exponential","title":"Examples","text":"","category":"section"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"AtmosphericModels.exponential(700e3)","category":"page"},{"location":"man/exponential/#References","page":"Exponential","title":"References","text":"","category":"section"},{"location":"man/exponential/","page":"Exponential","title":"Exponential","text":"[1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. Microcosm Press, Hawthorn, CA, USA.","category":"page"},{"location":"#SatelliteToolboxAtmosphericModels.jl","page":"Home","title":"SatelliteToolboxAtmosphericModels.jl","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"This package implements atmospheric models for the SatelliteToolbox.jl ecosystem. Currently, the following models are available:","category":"page"},{"location":"","page":"Home","title":"Home","text":"Exponential atmospheric model according to [1];\nJacchia-Roberts 1971;\nJacchia-Bowman 2008; and\nNRLMSISE-00.","category":"page"},{"location":"#Installation","page":"Home","title":"Installation","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"julia> using Pkg\njulia> Pkg.install(\"SatelliteToolboxAtmosphericModels\")","category":"page"},{"location":"#References","page":"Home","title":"References","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"[1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. Microcosm Press, Hawthorn, CA, USA.","category":"page"}] }