Skip to content

Latest commit

 

History

History
45 lines (35 loc) · 1.68 KB

README.md

File metadata and controls

45 lines (35 loc) · 1.68 KB

TabularTDLearning

CI codecov

This repository provides Julia implementations of the following Temporal-Difference reinforcement learning algorithms:

  • Q-Learning
  • SARSA
  • SARSA lambda
  • Prioritized Sweeping

Note that these solvers are tabular, and will only work with MDPs that have discrete state and action spaces.

Installation

Pkg.add("TabularTDLearning")

Example

using POMDPs
using TabularTDLearning
using POMDPModels
using POMDPTools

mdp = SimpleGridWorld()
# use Q-Learning
exppolicy = EpsGreedyPolicy(mdp, 0.01)
solver = QLearningSolver(exploration_policy=exppolicy, learning_rate=0.1, n_episodes=5000, max_episode_length=50, eval_every=50, n_eval_traj=100)
policy = solve(solver, mdp)
# Use SARSA
solver = SARSASolver(exploration_policy=exppolicy, learning_rate=0.1, n_episodes=5000, max_episode_length=50, eval_every=50, n_eval_traj=100)
policy = solve(solver, mdp)
# Use SARSA lambda
solver = SARSALambdaSolver(exploration_policy=exppolicy, learning_rate=0.1, lambda=0.9, n_episodes=5000, max_episode_length=50, eval_every=50, n_eval_traj=100)
policy = solve(solver, mdp)
# Use Prioritized Sweeping
mdp_ps = SimpleGridWorld(tprob=1.0)
solver = PrioritizedSweepingSolver(exploration_policy=exppolicy, learning_rate=0.1, n_episodes=5000, max_episode_length=50, eval_every=50, n_eval_traj=100,pq_threshold=0.5)
policy = solve(solver,mdp_ps)