-
Notifications
You must be signed in to change notification settings - Fork 0
/
script.py
62 lines (43 loc) · 1.71 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import tensorflow as tf
import numpy as np
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import tf2onnx
import onnx
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
num_classes = 10
input_shape = (28, 28,1)
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
#x_train = np.expand_dims(x_train, -1)
#x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = keras.Sequential()
model.add(layers.Conv2D(filters=6, kernel_size=(5, 5), activation='relu', input_shape=input_shape))
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(filters=16, kernel_size=(5, 5), activation='relu'))
model.add(layers.MaxPooling2D())
model.add(layers.Flatten())
model.add(layers.Dense(units=120, activation='relu'))
model.add(layers.Dense(units=84, activation='relu'))
model.add(layers.Dense(units=num_classes, activation = 'softmax'))
model.build()
model.summary()
batch_size = 128
epochs = 15
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
onnx_model,_=tf2onnx.convert.from_keras(model)
onnx.save(onnx_model, "lenet5.onnx")
np.save("data/five",x_train[0].ravel())