You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
目的:探索 学习大模型的RAG技术,并产出多个最佳实践和典型案例
时间周期:2024 年 2 月——6 月
LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。
资源支持:一个RAG项目一个 1/4 A100
InternLM 社区已有RAG工作:
InternLM2+RAG可以作为书生·浦语大模型大作业项目最简单的选题~
小伙伴如果有喜欢的、想做的RAG项目欢迎参与贡献哦~
想参与的同学欢迎联系浦语小助手(微信搜索 InternLM),或者联系兴趣小组组长不要葱姜蒜(微信搜索:KMnO4-zx)
飞书共享文件夹:https://aicarrier.feishu.cn/drive/folder/HdjWf1smQlIPtpdUEDqcx4hTnSd
Blog:动手做一个最小RAG架构——TinyRAG:KMnO4-zx/blog#2
Beta Was this translation helpful? Give feedback.
All reactions