Releases: ICB-DCM/pyABC
Releases · ICB-DCM/pyABC
pyABC 0.10.4
- Refactor
__all__
imports and docs API build (#312). - Fix json export of aggregated adaptive distances (#316).
- Apply additional flake8 checks on code quality (#317).
- Assert model input is of type
pyabc.Parameter
(#318). - Extend noise notebook to estimated noise parameters (#319).
- Implement optional pickling for multicore samplers; add MacOS
pipeline tests (#320).
pyABC 0.10.3
pyABC 0.10.2
pyABC 0.10.1
pyABC 0.10.0
- Exact inference via stochastic acceptor finalized and tested (developed
throughout the 0.9 series). - Support basic PEtab functionality using AMICI ODE simulations (#268).
- Various error fixes (#265, #267).
- Log number of processes used by multiprocessing samplers (#263).
- Implement pyabc.acceptor.ScaledPDFNorm (#269).
- Implement list population size (#274, #276).
- On history loading, automatically find an id of a successful run (#273).
pyABC 0.9.26
- Add optional check whether database is non-existent, to detect typos.
- Set lower bound in 1-dim KDEs to <= 0 to not wrongly display near-uniform
distributions. (both #257) - Implement redis password protection for sampler and manage routine (#256).
- Make samplers available in global namespace (#249).
- Implement ListTemperature (#248).
- Allow plotting the relative ESS (#245).
- Allow resampling of weighted particles (#244).
- Fix ABCSMC.load with rpy2 (#242).
pyABC 0.9.25
- Add summary statistics callback plot function (#231).
- Add possibility to log employed norms in StochasticAcceptor (#231) and
temperature proposals in Temperature (#232). - Implement optional early stopping in the MulticoreEvalParallelSampler and
the SingleCoreSampler, when a maximum simulation number is exceeded
(default behavior untouched). - Log stopping reason in ABCSMC.run (all #236).
- Implement Poisson (#237) and negative binomial (#239) stochastic kernels.
- Enable password protection for Redis sampler (#238).
- Fix scipy deprecations (#234, #241).
pyABC 0.9.24
- In ABCSMC.run, allow a default infinite number of iterations, and log the
ESS in each iteration. - Reformulate exponential temperature decay, allowing for a fixed number of
iterations or fixed ratios. - Solve acceptance rate temperature match in log space for numeric stability.
- Perform temperation of likelihood ratio in log space for numeric stability
(all #221). - Fix wrong maximum density value in binomial kernel.
- Allow not fixing the final temperature to 1 (all #223).
- Allow passing id to history directly (#225).
- Pass additional arguments to Acceptor.update.
- Give optional min_rate argument to AcceptanceRateScheme (all #226).
- In plot functions, add parameter specifying the reference value color (#227).
pyABC 0.9.23
- Fix extras_require directive.
- Fix error with histogram plot arguments.
- Extend test coverage for visualization (all #215).
- ABCSMC.{new,load,run} all return the history with set id for convenience.
- Document pickling paradigm of ABCSMC class (see doc/sampler.rst).
- Always use lazy evaluation in updates (all #216).
- Restructure run function of ABCSMC class (#216, #218).
- Run notebooks on travis only on pull requests (#217).
- Correct weighting in AcceptanceRateScheme (#219).
pyABC 0.9.22
- Fix error that prevented using rpy2 based summary statistics with non rpy2 based models (#213).