-
Notifications
You must be signed in to change notification settings - Fork 3
/
literature.txt
89 lines (75 loc) · 4.99 KB
/
literature.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
2016.9-2017.1
阅读的英文论文
1、《Deep Learning for Gender Recognition》
2、《Convolutional Neural Networks Applied to Handwrittrn Mathematical Symbols Classification》
3、《A Visual Attention Based Convolutional Neural Network for Image Classification》
4、《Melanoma Detection by Analysis of Clinical Images Using Convolutional Neural Network》
5、《Data debiased traffic sign recognition using MSERs and CNN》
6、《Plant Classification using Convolutional Nerual Networks》
7、《Neural Module Networks》
8、《Visual7W:Grounded Question Answering in Images》
9、《ABC-CNN:An Attention Based Convolutional Neural Network for Visual Question Answering》
10、《A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input》
11、《Visual Question Answering:Datasets,Algorithms, and Future Challenges》
12、《Visual Question Answering:A Survey of Methods and Datasets》
13、《Fully Convolutional Networks for Semantic Segmentation》(FCN)
14、《Rich feature hierarchies for accurate object detection and semantic segmentation》(RCNN)
15、《What Models Mean》
16、《ImageNet Classification with Deep Convolutional Neural Networks》(Alexnet)
阅读的英文博客
1、《A Beginner's Guide To Understanding Convolutional Neural Networks Part1》
2、《A Beginner's Guide To Understanding Convolutional Neural Networks Part2》
3、《The 9 Deep Learning Papers You Need To Know About》
4、《Analyzing The Papers Behind Facebook's Computer Vision Approch》
5、《Deep Learning Research Review Week 1:Generative Adversarial Nets》
6、《Deep Learning in a Nutshell:Core Concepts》
7、《Deep Learning in a Nutshell:History and Training》
8、《You Only Look Twic- Multi-Scale Object Detection in Satellite Imagery With Convolutinonal Neural Networks(Part1)》
9、《You Only Look Twice(Part1)-Vehicle and Infrastructure Detection in Satellite Imagery 》
2017.3-2017.8
阅读的英文论文
1、《Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network》(ESPCN)
2、《Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network》(SRGAN)
3、《Image Super-Resolution Using Deep Convolutional Networks》(SRCNN)
4、《Large-scale Video Classification with Convolutional Neural Networks》
5、《Generative Adversarial Nets》(GAN)
6、《Semantic Image Inpainting with Perceptual and Contextual Losses》
7、《Deep Residual Learning for Image Recognition》(ResNet)
8、《Dropout: A Simple Way to Prevent Neural Networks from Overtting》(dropout)
9、《You Only Look Once : Unified, Real-Time Object Detection》(YOLO)
10、《RAISR:Rapid and Accurate Image Super Resolution》(RAISR)
11、《Deep Video Deblurring》
12、《Image Style Transfer Using Convolutional Neural Networks》
13、《Deep Temporal Linear Encoding Networks》
14、《Is the deconvolution layer the same as a convolutional layer》
15、《Visualizing and Understanding Convolutional Networks》
16、《Image-to-Image Translation with Conditional Adversarial Networks》
17、《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》
18、《Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks》
19、《Accurate Image Super-Resolution Using Very Deep Convolutional Networks》(VDSR)
20、《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》
阅读的英文博客
1、《Convolutional Neural Networks for Visual Recognition》
2、《Image Complryion with Deep Learing in Tensorflow》
3、《Deconvolution and Checkerboard Artifacts》
4、《Image-to-Image Translation in Tensorflow》
5、《Deconvolution and Checkerboard Artifacts》
2017.9-至今
1、《Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution》(LapSRN)
2、《Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks》(MS-LapSRN)
3、《Enhanced Deep Residual Networks for Single Image Super-Resolution》(EDSR)
4、《Image Super-Resolution via Deep Recursive Residual Network》(DRRN)
5、《Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks》(DCGAN)
6、《Progressive Growing of GANs for Improved Quality, Stability, and Variation》
7、《Learning a Similarity Metric Discriminatively, with Application to Face Verification》
8、《Densely Connected Convolutional Networks》
9、《Image Super-Resolution Using Dense Skip Connections》(SRDensNet)
10、《Deep Image Prior》
11、《Learning to Compare Image Patches via Convolutional Neural Networks Sergey》
12、《Signature Verification using a 'Siamese' Time Delay Neural Network》
13、《Dimensionality Reduction by Learning an Invariant Mapping》
14、《Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections》
15、《U-Net Convolutional Networks for Biomedical Image Segmentation》
16、《Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network》(DCSCN)
17、《Deeply-Recursive Convolutional Network for Image Super-Resolution》(DRCN)
18、《Accelerating the Super-Resolution Convolutional Neural Network》(FSRCNN)