diff --git a/.buildinfo b/.buildinfo index 289ef5bb8..afb436b0f 100644 --- a/.buildinfo +++ b/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: dfad15504462af3c8fe11f75a9e22d02 +config: 4345eb544198291a5f920a7e7567c13d tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/_images/sphx_glr_connectivity_001.png b/_images/sphx_glr_connectivity_001.png index cc060d5aa..e8ee8cd91 100644 Binary files a/_images/sphx_glr_connectivity_001.png and b/_images/sphx_glr_connectivity_001.png differ diff --git a/_images/sphx_glr_connectivity_002.png b/_images/sphx_glr_connectivity_002.png index b8d8cfa89..a3c0bf828 100644 Binary files a/_images/sphx_glr_connectivity_002.png and b/_images/sphx_glr_connectivity_002.png differ diff --git a/_images/sphx_glr_connectivity_003.png b/_images/sphx_glr_connectivity_003.png index e6e113957..556500612 100644 Binary files a/_images/sphx_glr_connectivity_003.png and b/_images/sphx_glr_connectivity_003.png differ diff --git a/_images/sphx_glr_connectivity_thumb.png b/_images/sphx_glr_connectivity_thumb.png index 459021612..b4a6e9c66 100644 Binary files a/_images/sphx_glr_connectivity_thumb.png and b/_images/sphx_glr_connectivity_thumb.png differ diff --git a/_images/sphx_glr_disk_001.png b/_images/sphx_glr_disk_001.png index 38001e259..d829d8dbd 100644 Binary files a/_images/sphx_glr_disk_001.png and b/_images/sphx_glr_disk_001.png differ diff --git a/_images/sphx_glr_disk_thumb.png b/_images/sphx_glr_disk_thumb.png index b41ae8ea1..24a425dca 100644 Binary files a/_images/sphx_glr_disk_thumb.png and b/_images/sphx_glr_disk_thumb.png differ diff --git a/_images/sphx_glr_plotting_001.png b/_images/sphx_glr_plotting_001.png index db67f5f5c..ddcbb0dde 100644 Binary files a/_images/sphx_glr_plotting_001.png and b/_images/sphx_glr_plotting_001.png differ diff --git a/_images/sphx_glr_plotting_003.png b/_images/sphx_glr_plotting_003.png index 98913493d..65aec95c8 100644 Binary files a/_images/sphx_glr_plotting_003.png and b/_images/sphx_glr_plotting_003.png differ diff --git a/_images/sphx_glr_plotting_004.png b/_images/sphx_glr_plotting_004.png index 56d5dff15..37af30047 100644 Binary files a/_images/sphx_glr_plotting_004.png and b/_images/sphx_glr_plotting_004.png differ diff --git a/_images/sphx_glr_plotting_005.png b/_images/sphx_glr_plotting_005.png index 528596a98..6d7dad2ff 100644 Binary files a/_images/sphx_glr_plotting_005.png and b/_images/sphx_glr_plotting_005.png differ diff --git a/_images/sphx_glr_plotting_006.png b/_images/sphx_glr_plotting_006.png index 41c752c8a..b3fb24fa1 100644 Binary files a/_images/sphx_glr_plotting_006.png and b/_images/sphx_glr_plotting_006.png differ diff --git a/_images/sphx_glr_plotting_007.png b/_images/sphx_glr_plotting_007.png index 1c3c60bb4..01bd57694 100644 Binary files a/_images/sphx_glr_plotting_007.png and b/_images/sphx_glr_plotting_007.png differ diff --git a/_images/sphx_glr_plotting_008.png b/_images/sphx_glr_plotting_008.png index 194b8381b..55bd4f421 100644 Binary files a/_images/sphx_glr_plotting_008.png and b/_images/sphx_glr_plotting_008.png differ diff --git a/_images/sphx_glr_plotting_009.png b/_images/sphx_glr_plotting_009.png index db67f5f5c..ddcbb0dde 100644 Binary files a/_images/sphx_glr_plotting_009.png and b/_images/sphx_glr_plotting_009.png differ diff --git a/_images/sphx_glr_plotting_thumb.png b/_images/sphx_glr_plotting_thumb.png index 3b3e2d84d..122edec18 100644 Binary files a/_images/sphx_glr_plotting_thumb.png and b/_images/sphx_glr_plotting_thumb.png differ diff --git a/_images/sphx_glr_quick_overview_002.png b/_images/sphx_glr_quick_overview_002.png index 57e9c38c1..88db9bc37 100644 Binary files a/_images/sphx_glr_quick_overview_002.png and b/_images/sphx_glr_quick_overview_002.png differ diff --git a/_images/sphx_glr_voronoi_001.png b/_images/sphx_glr_voronoi_001.png index cdb63421c..09b0a9b95 100644 Binary files a/_images/sphx_glr_voronoi_001.png and b/_images/sphx_glr_voronoi_001.png differ diff --git a/_images/sphx_glr_voronoi_002.png b/_images/sphx_glr_voronoi_002.png index 8d115e5fa..b8986d21c 100644 Binary files a/_images/sphx_glr_voronoi_002.png and b/_images/sphx_glr_voronoi_002.png differ diff --git a/_images/sphx_glr_voronoi_003.png b/_images/sphx_glr_voronoi_003.png index 8cd833e3f..c1075a433 100644 Binary files a/_images/sphx_glr_voronoi_003.png and b/_images/sphx_glr_voronoi_003.png differ diff --git a/_images/sphx_glr_voronoi_004.png b/_images/sphx_glr_voronoi_004.png index ec2ac7108..c53388f20 100644 Binary files a/_images/sphx_glr_voronoi_004.png and b/_images/sphx_glr_voronoi_004.png differ diff --git a/_images/sphx_glr_voronoi_005.png b/_images/sphx_glr_voronoi_005.png index fc1eeca2c..5c9daa161 100644 Binary files a/_images/sphx_glr_voronoi_005.png and b/_images/sphx_glr_voronoi_005.png differ diff --git a/_images/sphx_glr_voronoi_006.png b/_images/sphx_glr_voronoi_006.png index be4c6a833..be477301c 100644 Binary files a/_images/sphx_glr_voronoi_006.png and b/_images/sphx_glr_voronoi_006.png differ diff --git a/_images/sphx_glr_voronoi_007.png b/_images/sphx_glr_voronoi_007.png index 156ed9115..b15cc4b45 100644 Binary files a/_images/sphx_glr_voronoi_007.png and b/_images/sphx_glr_voronoi_007.png differ diff --git a/_images/sphx_glr_voronoi_thumb.png b/_images/sphx_glr_voronoi_thumb.png index cfaf410b5..8a95fed3b 100644 Binary files a/_images/sphx_glr_voronoi_thumb.png and b/_images/sphx_glr_voronoi_thumb.png differ diff --git a/_modules/xugrid/regrid/regridder.html b/_modules/xugrid/regrid/regridder.html index ca49fd1c2..b4525df84 100644 --- a/_modules/xugrid/regrid/regridder.html +++ b/_modules/xugrid/regrid/regridder.html @@ -502,10 +502,11 @@
source_grid = self._source
first_dims_shape = source.shape[: -source_grid.ndim]
- # The regridding can be mapped over additional dimensions (e.g. for every time slice).
- # This is the `extra_index` iteration in _regrid().
- # But it should work consistently even if no additional present: in that case we create
- # a 1-sized additional dimension in front, so the `extra_index` iteration always applies.
+ # The regridding can be mapped over additional dimensions, e.g. for
+ # every time slice. This is the `extra_index` iteration in _regrid().
+ # But it should work consistently even if no additional present: in
+ # that case we create a 1-sized additional dimension in front, so the
+ # `extra_index` iteration always applies.
if source.ndim == source_grid.ndim:
source = source[np.newaxis]
diff --git a/_sources/examples-dev/sg_execution_times.rst.txt b/_sources/examples-dev/sg_execution_times.rst.txt
index 2767d7cf9..93198a97a 100644
--- a/_sources/examples-dev/sg_execution_times.rst.txt
+++ b/_sources/examples-dev/sg_execution_times.rst.txt
@@ -6,8 +6,8 @@
Computation times
=================
-**00:02.345** total execution time for **examples-dev** files:
+**00:01.580** total execution time for **examples-dev** files:
+----------------------------------------------------------+-----------+--------+
-| :ref:`sphx_glr_examples-dev_voronoi.py` (``voronoi.py``) | 00:02.345 | 0.0 MB |
+| :ref:`sphx_glr_examples-dev_voronoi.py` (``voronoi.py``) | 00:01.580 | 0.0 MB |
+----------------------------------------------------------+-----------+--------+
diff --git a/_sources/examples-dev/voronoi.rst.txt b/_sources/examples-dev/voronoi.rst.txt
index baa809cf4..c3bf6dc2e 100644
--- a/_sources/examples-dev/voronoi.rst.txt
+++ b/_sources/examples-dev/voronoi.rst.txt
@@ -630,7 +630,7 @@ The figure shows:
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** ( 0 minutes 2.345 seconds)
+ **Total running time of the script:** ( 0 minutes 1.580 seconds)
.. _sphx_glr_download_examples-dev_voronoi.py:
diff --git a/_sources/examples/connectivity.rst.txt b/_sources/examples/connectivity.rst.txt
index 9962ec470..b4286964a 100644
--- a/_sources/examples/connectivity.rst.txt
+++ b/_sources/examples/connectivity.rst.txt
@@ -129,7 +129,7 @@ By default, the border value for binary erosion is set to ``False`` (equal to
.. code-block:: none
-
+
@@ -165,7 +165,7 @@ start by setting a single value in the center of the grid to ``True``.
.. code-block:: none
-
+
@@ -200,7 +200,7 @@ alternative border value:
.. code-block:: none
-
+
@@ -238,7 +238,7 @@ analyse connected parts of the mesh.
.. code-block:: none
-
+
@@ -272,7 +272,7 @@ Tesselation.
.. code-block:: none
-
+
@@ -316,7 +316,7 @@ the original.
.. code-block:: none
-
+
@@ -355,7 +355,7 @@ We can break down one of the Voronoi tesselations from above into triangles:
.. code-block:: none
-
+
@@ -409,7 +409,7 @@ the upper and lower parts:
.. code-block:: none
-
+
@@ -439,7 +439,7 @@ We can now use Laplace interpolation to fill the gaps in the grid.
.. code-block:: none
-
+
@@ -480,7 +480,7 @@ To illustrate, let's take a look at the connectivity matrix of the Xoxo grid.
.. code-block:: none
-
+
@@ -516,14 +516,14 @@ locality:
.. code-block:: none
-
+
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** ( 0 minutes 2.265 seconds)
+ **Total running time of the script:** ( 0 minutes 1.601 seconds)
.. _sphx_glr_download_examples_connectivity.py:
diff --git a/_sources/examples/overlap_regridder.rst.txt b/_sources/examples/overlap_regridder.rst.txt
index 624384060..7f31b082f 100644
--- a/_sources/examples/overlap_regridder.rst.txt
+++ b/_sources/examples/overlap_regridder.rst.txt
@@ -114,7 +114,7 @@ some bathymetry) of the Netherlands, and a coarser target grid.
.. code-block:: none
-
+
@@ -204,7 +204,7 @@ conservative methods, such as conductance:
.. code-block:: none
-
+
@@ -282,7 +282,7 @@ To use our custom method, we provide at initialization of the OverlapRegridder:
.. code-block:: none
-
+
@@ -322,7 +322,7 @@ function can deal with NaN values! -- hence ``nanpercentile`` rather than
.. code-block:: none
-
+
@@ -333,7 +333,7 @@ function can deal with NaN values! -- hence ``nanpercentile`` rather than
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** ( 0 minutes 6.528 seconds)
+ **Total running time of the script:** ( 0 minutes 5.258 seconds)
.. _sphx_glr_download_examples_overlap_regridder.py:
diff --git a/_sources/examples/partitioning.rst.txt b/_sources/examples/partitioning.rst.txt
index 3434e11ef..398781ddf 100644
--- a/_sources/examples/partitioning.rst.txt
+++ b/_sources/examples/partitioning.rst.txt
@@ -76,7 +76,7 @@ into several parts.
.. code-block:: none
-
+
@@ -145,7 +145,7 @@ We can easily plot this data to visualize the partitions:
.. code-block:: none
-
+
@@ -213,7 +213,7 @@ merge these partitions back into one whole for post-processing:
.. code-block:: none
-
+
@@ -275,7 +275,7 @@ data:
.. code-block:: none
-
+
@@ -667,7 +667,7 @@ Note that partioning and merging does not preserve order!
<xarray.DataArray 'elevation' (mesh2d_nFaces: 5248)>
array([False, False, False, ..., False, False, False])
Coordinates:
- * mesh2d_nFaces (mesh2d_nFaces) int64 0 1 2 3 4 ... 5243 5244 5245 5246 5247
xarray.DataArray'elevation'- mesh2d_nFaces: 5248
- False False False False False False ... False False False False False
array([False, False, False, ..., False, False, False])
- mesh2d_nFaces(mesh2d_nFaces)int640 1 2 3 4 ... 5244 5245 5246 5247
array([ 0, 1, 2, ..., 5245, 5246, 5247])
- mesh2d_nFacesPandasIndex
PandasIndex(RangeIndex(start=0, stop=5248, step=1, name='mesh2d_nFaces'))
array([False, False, False, ..., False, False, False])
array([ 0, 1, 2, ..., 5245, 5246, 5247])
PandasIndex(RangeIndex(start=0, stop=5248, step=1, name='mesh2d_nFaces'))
array([ True, True, True, ..., True, True, True])
array([ 23882.79376058, 186048.98609163, 183280.61324667, ..., - 33842.56847139, 33139.63056206, 30303.5164253 ])
array([364821.96725663, 417102.96121876, 334623.01878379, ..., - 397494.51640391, 400187.85011645, 396399.29036318])
array([ 0, 1, 2, ..., 5245, 5246, 5247])
PandasIndex(RangeIndex(start=0, stop=5248, step=1, name='mesh2d_nFaces'))
array([ True, True, True, ..., True, True, True])
array([ 23882.79376058, 186048.98609163, 183280.61324667, ..., + 33842.56847139, 33139.63056206, 30303.5164253 ])
array([364821.96725663, 417102.96121876, 334623.01878379, ..., + 397494.51640391, 400187.85011645, 396399.29036318])
array([ 0, 1, 2, ..., 5245, 5246, 5247])
PandasIndex(RangeIndex(start=0, stop=5248, step=1, name='mesh2d_nFaces'))
array([ 0, 1, 2, ..., 597, 598, 599])
array([ 0, 1, 2, ..., 381, 382, 383])
array([ 0, 1, 2, ..., 214, 215, 216])
array([ 1.93329198, 2.09140061, 1.87484204, 1.71955236, 1.71961656, + edge_z (mesh2d_nEdges) float64 1.989 1.875 1.8 ... 3.929 4.909 6.544
array([ 0, 1, 2, ..., 597, 598, 599])
array([ 0, 1, 2, ..., 214, 215, 216])
array([ 0, 1, 2, ..., 381, 382, 383])
array([ 1.93329198, 2.09140061, 1.87484204, 1.71955236, 1.71961656, 1.87394091, 2.14519674, 2.30021006, 2.24185487, 2.02372336, 1.68192173, 1.51366054, 1.49636083, 1.42590672, 1.4384199 , 1.61206453, 1.98452218, 2.34631843, 2.38859332, 2.67626878, @@ -496,26 +496,26 @@ faces. 7.75144002, 7.88800553, 7.04359085, 5.35779319, 3.29726906, 1.5076096 , 0.54807376, 0.63361455, 1.53104833, 2.68784153, 3.53975332, 3.82702868, 3.73040836, 3.74099464, 4.34093488, - 5.68812411, 7.49116681])
array([ 1.73730009, 1.91825084, 2.26876665, 5.31052091, 1.78990802, - 0.56592199, 2.0239473 , 1.20054259, 1.50084278, 4.2032856 , - 3.82037735, 3.69611343, 2.34307619, 2.45189748, 2.05010445, - 1.23173146, 1.24293922, 4.96369209, 1.23243737, 1.31070306, - 0.4679772 , 0.67854164, 0.6176979 , 5.38214386, 6.73305299, - 5.12696041, 5.7557379 , 6.46896622, 5.81353967, 5.66282462, - 3.49842491, 4.88905017, 1.14756229, 0.93823378, 1.32658274, - 0.70496014, 0.75997195, 2.86366982, 2.40334076, 3.61638288, - 3.08577494, 3.2469001 , 4.43745556, 0.6593039 , 0.24747201, - 2.41423365, 1.59867793, 1.76873353, 3.01055328, 3.03445169, - 0.2555184 , 0.37725087, 0.46190819, 0. , 0.29115682, - 0.01870268, 0.94066027, 0.25905367, 0.33664867, 0.13347392, - 4.19148844, 3.92302886, 4.98393527, 3.74986148, 3.56610806, - 3.70253319, 3.94001636, 3.67116513, 1.69996221, 2.43672463, - 2.34888072, 3.24776438, 2.59270025, 3.28217841, 3.09683054, - 1.13032688, 1.99799398, 2.59541373, 7.44429486, 2.70053321, - 2.49586377, 2.92752612, 3.48356218, 1.26794194, 1.94499938, - 1.4014765 , 2.15090053, 1.3510253 , 1.69787528, 1.24345543, - 1.28084397, 1.34147464, 1.62334982, 1.37949882, 5.46523899, - 7.02004231, 7.66440448, 7.27703645, 2.80282308, 0.7997561 , + 5.68812411, 7.49116681])
array([ 1.73730009, 1.91825084, 2.26876665, 5.31052091, 3.49842491, + 4.88905017, 1.78990802, 2.0239473 , 4.2032856 , 3.82037735, + 3.69611343, 2.34307619, 2.45189748, 2.05010445, 7.44429486, + 7.02004231, 1.23173146, 1.24293922, 4.96369209, 5.46523899, + 1.23243737, 1.31070306, 0.4679772 , 0.67854164, 0.6176979 , + 5.38214386, 6.73305299, 5.12696041, 5.7557379 , 5.66282462, + 1.14756229, 0.93823378, 1.32658274, 0.70496014, 0.75997195, + 0.29115682, 1.20054259, 1.50084278, 0.01870268, 3.61638288, + 4.43745556, 0. , 0.56592199, 2.41423365, 1.59867793, + 1.76873353, 3.01055328, 3.03445169, 0.2555184 , 0.37725087, + 0.46190819, 4.19148844, 3.92302886, 4.98393527, 3.74986148, + 3.56610806, 3.70253319, 3.94001636, 3.67116513, 1.69996221, + 2.43672463, 2.34888072, 3.24776438, 2.59270025, 3.28217841, + 3.09683054, 1.13032688, 1.99799398, 2.59541373, 6.05399785, + 3.52435283, 3.76578293, 4.86982224, 7.27703645, 7.66440448, + 2.70053321, 2.49586377, 2.92752612, 3.48356218, 1.26794194, + 1.94499938, 1.4014765 , 2.15090053, 1.3510253 , 1.69787528, + 1.24345543, 1.28084397, 1.34147464, 1.62334982, 1.37949882, + 2.80282308, 0.7997561 , 0.69728051, 3.52352232, 3.56769369, + 0.48974385, 0.58735218, 0.56877435, 0.46641764, 5.11731182, ... 1.11593038, 1.26297077, 2.88366643, 2.51686604, 1.85913062, 2.54883651, 3.87813329, 4.72788383, 4.59858735, 4.01295114, @@ -536,7 +536,7 @@ faces. 1.91611618, 0.93777886, 0.82127919, 0.82409913, 0.93548072, 0.94143233, 0.96785184, 5.94683372, 6.36476797, 4.85117403, 5.39410053, 4.05700573, 4.22359378, 5.59335232, 4.86883751, - 7.30890722, 7.04320847, 5.40762661, 6.42392991])
array([ 1.98860502, 1.87511577, 1.7999506 , 1.81179977, 1.90641372, + 7.30890722, 7.04320847, 5.40762661, 6.42392991])
array([ 1.98860502, 1.87511577, 1.7999506 , 1.81179977, 1.90641372, 2.01522135, 1.95483397, 2.10396573, 2.1578564 , 2.07770379, 2.21438924, 1.76492656, 1.9903005 , 1.87706115, 1.74001569, 1.71509433, 1.64090366, 1.58755786, 1.5894138 , 1.77229325, @@ -576,7 +576,7 @@ faces. 3.32923738, 4.69300073, 6.14800061, 7.35257773, 7.91736337, 7.55634316, 6.24399649, 4.29381546, 2.28970536, 0.86825983, 0.43934876, 0.99050549, 2.09805846, 3.16064474, 3.73547458, - 3.7830263 , 3.6705139 , 3.92869759, 4.90866681, 6.54446841])
PandasIndex(RangeIndex(start=0, stop=600, step=1, name='mesh2d_nEdges'))
PandasIndex(RangeIndex(start=0, stop=384, step=1, name='mesh2d_nFaces'))
PandasIndex(RangeIndex(start=0, stop=217, step=1, name='mesh2d_nNodes'))
PandasIndex(RangeIndex(start=0, stop=600, step=1, name='mesh2d_nEdges'))
PandasIndex(RangeIndex(start=0, stop=217, step=1, name='mesh2d_nNodes'))
PandasIndex(RangeIndex(start=0, stop=384, step=1, name='mesh2d_nFaces'))
array([ 0, 1, 2, ..., 9137, 9138, 9139])
array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:30:00.000000000', + face_node_connectivity (face, nmax_face) float64 ...
array([ 0, 1, 2, ..., 9137, 9138, 9139])
array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:30:00.000000000', '2000-01-01T01:00:00.000000000', '2000-01-01T01:33:45.000000000', '2000-01-01T02:03:45.000000000', '2000-01-01T02:33:45.000000000', '2000-01-01T03:03:45.000000000', '2000-01-01T03:33:45.000000000', @@ -488,10 +488,10 @@ We'll start by fetching a dataset: '2000-01-01T21:02:30.000000000', '2000-01-01T21:32:30.000000000', '2000-01-01T22:02:30.000000000', '2000-01-01T22:32:30.000000000', '2000-01-01T23:02:30.000000000', '2000-01-01T23:32:30.000000000', - '2000-01-02T00:00:00.000000000'], dtype='datetime64[ns]')
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[447860 values with dtype=float64]
[1 values with dtype=int32]
[50607 values with dtype=float64]
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + '2000-01-02T00:00:00.000000000'], dtype='datetime64[ns]')
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[447860 values with dtype=float64]
[1 values with dtype=int32]
[50607 values with dtype=float64]
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 9130, 9131, 9132, 9133, 9134, 9135, 9136, 9137, 9138, 9139], - dtype='int64', name='node', length=9140))
PandasIndex(DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 00:30:00', + dtype='int64', name='node', length=9140))
PandasIndex(DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 00:30:00', '2000-01-01 01:00:00', '2000-01-01 01:33:45', '2000-01-01 02:03:45', '2000-01-01 02:33:45', '2000-01-01 03:03:45', '2000-01-01 03:33:45', @@ -516,7 +516,7 @@ We'll start by fetching a dataset: '2000-01-01 22:02:30', '2000-01-01 22:32:30', '2000-01-01 23:02:30', '2000-01-01 23:32:30', '2000-01-02 00:00:00'], - dtype='datetime64[ns]', name='time', freq=None))
array([ 0, 1, 2, ..., 9137, 9138, 9139])
array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:30:00.000000000', + depth (time, node) float64 ...
array([ 0, 1, 2, ..., 9137, 9138, 9139])
array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:30:00.000000000', '2000-01-01T01:00:00.000000000', '2000-01-01T01:33:45.000000000', '2000-01-01T02:03:45.000000000', '2000-01-01T02:33:45.000000000', '2000-01-01T03:03:45.000000000', '2000-01-01T03:33:45.000000000', @@ -943,7 +943,7 @@ separate the variables: '2000-01-01T21:02:30.000000000', '2000-01-01T21:32:30.000000000', '2000-01-01T22:02:30.000000000', '2000-01-01T22:32:30.000000000', '2000-01-01T23:02:30.000000000', '2000-01-01T23:32:30.000000000', - '2000-01-02T00:00:00.000000000'], dtype='datetime64[ns]')
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[447860 values with dtype=float64]
PandasIndex(RangeIndex(start=0, stop=9140, step=1, name='node'))
PandasIndex(DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 00:30:00', + '2000-01-02T00:00:00.000000000'], dtype='datetime64[ns]')
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[447860 values with dtype=float64]
PandasIndex(RangeIndex(start=0, stop=9140, step=1, name='node'))
PandasIndex(DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 00:30:00', '2000-01-01 01:00:00', '2000-01-01 01:33:45', '2000-01-01 02:03:45', '2000-01-01 02:33:45', '2000-01-01 03:03:45', '2000-01-01 03:33:45', @@ -968,7 +968,7 @@ separate the variables: '2000-01-01 22:02:30', '2000-01-01 22:32:30', '2000-01-01 23:02:30', '2000-01-01 23:32:30', '2000-01-02 00:00:00'], - dtype='datetime64[ns]', name='time', freq=None))
[9140 values with dtype=float64]
array([ 0, 1, 2, ..., 9137, 9138, 9139])
[9140 values with dtype=float64]
[9140 values with dtype=float64]
PandasIndex(RangeIndex(start=0, stop=9140, step=1, name='node'))
[9140 values with dtype=float64]
array([ 0, 1, 2, ..., 9137, 9138, 9139])
[9140 values with dtype=float64]
[9140 values with dtype=float64]
PandasIndex(RangeIndex(start=0, stop=9140, step=1, name='node'))
<xarray.DataArray (mesh2d_nFaces: 2)> array([1., 2.]) Coordinates: - * mesh2d_nFaces (mesh2d_nFaces) int64 0 1
array([1., 2.])
array([0, 1])
PandasIndex(RangeIndex(start=0, stop=2, step=1, name='mesh2d_nFaces'))
array([1., 2.])
array([0, 1])
PandasIndex(RangeIndex(start=0, stop=2, step=1, name='mesh2d_nFaces'))
<xarray.DataArray (mesh2d_nFaces: 2)> array([11., 12.]) Coordinates: - * mesh2d_nFaces (mesh2d_nFaces) int64 0 1
array([11., 12.])
array([0, 1])
PandasIndex(RangeIndex(start=0, stop=2, step=1, name='mesh2d_nFaces'))
array([11., 12.])
array([0, 1])
PandasIndex(RangeIndex(start=0, stop=2, step=1, name='mesh2d_nFaces'))
array([0, 1])
array([1., 2.])
PandasIndex(RangeIndex(start=0, stop=2, step=1, name='mesh2d_nFaces'))
array([0, 1])
array([1., 2.])
PandasIndex(RangeIndex(start=0, stop=2, step=1, name='mesh2d_nFaces'))
array([ 0, 1, 2, ..., 597, 598, 599])
array([ 0, 1, 2, ..., 381, 382, 383])
array([ 0, 1, 2, ..., 214, 215, 216])
array([ 1.93329198, 2.09140061, 1.87484204, 1.71955236, 1.71961656, + edge_z (mesh2d_nEdges) float64 1.989 1.875 1.8 ... 3.929 4.909 6.544
array([ 0, 1, 2, ..., 597, 598, 599])
array([ 0, 1, 2, ..., 214, 215, 216])
array([ 0, 1, 2, ..., 381, 382, 383])
array([ 1.93329198, 2.09140061, 1.87484204, 1.71955236, 1.71961656, 1.87394091, 2.14519674, 2.30021006, 2.24185487, 2.02372336, 1.68192173, 1.51366054, 1.49636083, 1.42590672, 1.4384199 , 1.61206453, 1.98452218, 2.34631843, 2.38859332, 2.67626878, @@ -3162,26 +3162,26 @@ grid (nodes, faces, edges). 7.75144002, 7.88800553, 7.04359085, 5.35779319, 3.29726906, 1.5076096 , 0.54807376, 0.63361455, 1.53104833, 2.68784153, 3.53975332, 3.82702868, 3.73040836, 3.74099464, 4.34093488, - 5.68812411, 7.49116681])
array([ 1.73730009, 1.91825084, 2.26876665, 5.31052091, 1.78990802, - 0.56592199, 2.0239473 , 1.20054259, 1.50084278, 4.2032856 , - 3.82037735, 3.69611343, 2.34307619, 2.45189748, 2.05010445, - 1.23173146, 1.24293922, 4.96369209, 1.23243737, 1.31070306, - 0.4679772 , 0.67854164, 0.6176979 , 5.38214386, 6.73305299, - 5.12696041, 5.7557379 , 6.46896622, 5.81353967, 5.66282462, - 3.49842491, 4.88905017, 1.14756229, 0.93823378, 1.32658274, - 0.70496014, 0.75997195, 2.86366982, 2.40334076, 3.61638288, - 3.08577494, 3.2469001 , 4.43745556, 0.6593039 , 0.24747201, - 2.41423365, 1.59867793, 1.76873353, 3.01055328, 3.03445169, - 0.2555184 , 0.37725087, 0.46190819, 0. , 0.29115682, - 0.01870268, 0.94066027, 0.25905367, 0.33664867, 0.13347392, - 4.19148844, 3.92302886, 4.98393527, 3.74986148, 3.56610806, - 3.70253319, 3.94001636, 3.67116513, 1.69996221, 2.43672463, - 2.34888072, 3.24776438, 2.59270025, 3.28217841, 3.09683054, - 1.13032688, 1.99799398, 2.59541373, 7.44429486, 2.70053321, - 2.49586377, 2.92752612, 3.48356218, 1.26794194, 1.94499938, - 1.4014765 , 2.15090053, 1.3510253 , 1.69787528, 1.24345543, - 1.28084397, 1.34147464, 1.62334982, 1.37949882, 5.46523899, - 7.02004231, 7.66440448, 7.27703645, 2.80282308, 0.7997561 , + 5.68812411, 7.49116681])
array([ 1.73730009, 1.91825084, 2.26876665, 5.31052091, 3.49842491, + 4.88905017, 1.78990802, 2.0239473 , 4.2032856 , 3.82037735, + 3.69611343, 2.34307619, 2.45189748, 2.05010445, 7.44429486, + 7.02004231, 1.23173146, 1.24293922, 4.96369209, 5.46523899, + 1.23243737, 1.31070306, 0.4679772 , 0.67854164, 0.6176979 , + 5.38214386, 6.73305299, 5.12696041, 5.7557379 , 5.66282462, + 1.14756229, 0.93823378, 1.32658274, 0.70496014, 0.75997195, + 0.29115682, 1.20054259, 1.50084278, 0.01870268, 3.61638288, + 4.43745556, 0. , 0.56592199, 2.41423365, 1.59867793, + 1.76873353, 3.01055328, 3.03445169, 0.2555184 , 0.37725087, + 0.46190819, 4.19148844, 3.92302886, 4.98393527, 3.74986148, + 3.56610806, 3.70253319, 3.94001636, 3.67116513, 1.69996221, + 2.43672463, 2.34888072, 3.24776438, 2.59270025, 3.28217841, + 3.09683054, 1.13032688, 1.99799398, 2.59541373, 6.05399785, + 3.52435283, 3.76578293, 4.86982224, 7.27703645, 7.66440448, + 2.70053321, 2.49586377, 2.92752612, 3.48356218, 1.26794194, + 1.94499938, 1.4014765 , 2.15090053, 1.3510253 , 1.69787528, + 1.24345543, 1.28084397, 1.34147464, 1.62334982, 1.37949882, + 2.80282308, 0.7997561 , 0.69728051, 3.52352232, 3.56769369, + 0.48974385, 0.58735218, 0.56877435, 0.46641764, 5.11731182, ... 1.11593038, 1.26297077, 2.88366643, 2.51686604, 1.85913062, 2.54883651, 3.87813329, 4.72788383, 4.59858735, 4.01295114, @@ -3202,7 +3202,7 @@ grid (nodes, faces, edges). 1.91611618, 0.93777886, 0.82127919, 0.82409913, 0.93548072, 0.94143233, 0.96785184, 5.94683372, 6.36476797, 4.85117403, 5.39410053, 4.05700573, 4.22359378, 5.59335232, 4.86883751, - 7.30890722, 7.04320847, 5.40762661, 6.42392991])
array([ 1.98860502, 1.87511577, 1.7999506 , 1.81179977, 1.90641372, + 7.30890722, 7.04320847, 5.40762661, 6.42392991])
array([ 1.98860502, 1.87511577, 1.7999506 , 1.81179977, 1.90641372, 2.01522135, 1.95483397, 2.10396573, 2.1578564 , 2.07770379, 2.21438924, 1.76492656, 1.9903005 , 1.87706115, 1.74001569, 1.71509433, 1.64090366, 1.58755786, 1.5894138 , 1.77229325, @@ -3242,7 +3242,7 @@ grid (nodes, faces, edges). 3.32923738, 4.69300073, 6.14800061, 7.35257773, 7.91736337, 7.55634316, 6.24399649, 4.29381546, 2.28970536, 0.86825983, 0.43934876, 0.99050549, 2.09805846, 3.16064474, 3.73547458, - 3.7830263 , 3.6705139 , 3.92869759, 4.90866681, 6.54446841])
PandasIndex(RangeIndex(start=0, stop=600, step=1, name='mesh2d_nEdges'))
PandasIndex(RangeIndex(start=0, stop=384, step=1, name='mesh2d_nFaces'))
PandasIndex(RangeIndex(start=0, stop=217, step=1, name='mesh2d_nNodes'))
PandasIndex(RangeIndex(start=0, stop=600, step=1, name='mesh2d_nEdges'))
PandasIndex(RangeIndex(start=0, stop=217, step=1, name='mesh2d_nNodes'))
PandasIndex(RangeIndex(start=0, stop=384, step=1, name='mesh2d_nFaces'))
<xarray.Dataset> Dimensions: () Data variables: - *empty*
array([ 0, 1, 2, ..., 9137, 9138, 9139])
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[9140 values with dtype=float64]
PandasIndex(RangeIndex(start=0, stop=9140, step=1, name='node'))
array([ 0, 1, 2, ..., 9137, 9138, 9139])
[9140 values with dtype=float64]
[9140 values with dtype=float64]
[9140 values with dtype=float64]
PandasIndex(RangeIndex(start=0, stop=9140, step=1, name='node'))
[9140 values with dtype=float64]
[9140 values with dtype=float64]
array([ 0, 1, 2, ..., 9137, 9138, 9139])
array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:30:00.000000000', + Conventions: CF-1.8 UGRID-1.0
[9140 values with dtype=float64]
[9140 values with dtype=float64]
array([ 0, 1, 2, ..., 9137, 9138, 9139])
array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:30:00.000000000', '2000-01-01T01:00:00.000000000', '2000-01-01T01:33:45.000000000', '2000-01-01T02:03:45.000000000', '2000-01-01T02:33:45.000000000', '2000-01-01T03:03:45.000000000', '2000-01-01T03:33:45.000000000', @@ -4458,7 +4458,7 @@ before writing. '2000-01-01T21:02:30.000000000', '2000-01-01T21:32:30.000000000', '2000-01-01T22:02:30.000000000', '2000-01-01T22:32:30.000000000', '2000-01-01T23:02:30.000000000', '2000-01-01T23:32:30.000000000', - '2000-01-02T00:00:00.000000000'], dtype='datetime64[ns]')
[9140 values with dtype=float64]
[447860 values with dtype=float64]
PandasIndex(RangeIndex(start=0, stop=9140, step=1, name='node'))
PandasIndex(DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 00:30:00', + '2000-01-02T00:00:00.000000000'], dtype='datetime64[ns]')
[9140 values with dtype=float64]
[447860 values with dtype=float64]
PandasIndex(RangeIndex(start=0, stop=9140, step=1, name='node'))
PandasIndex(DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 00:30:00', '2000-01-01 01:00:00', '2000-01-01 01:33:45', '2000-01-01 02:03:45', '2000-01-01 02:33:45', '2000-01-01 03:03:45', '2000-01-01 03:33:45', @@ -4483,7 +4483,7 @@ before writing. '2000-01-01 22:02:30', '2000-01-01 22:32:30', '2000-01-01 23:02:30', '2000-01-01 23:32:30', '2000-01-02 00:00:00'], - dtype='datetime64[ns]', name='time', freq=None))
array([[ -8.83000004, -0.18999958, 44.04000092, ..., -9.72 , + * layer (layer) int64 1 2 3 4 5
array([[ -8.83000004, -0.18999958, 44.04000092, ..., -9.72 , -25.82999992, -10.44999999], [-18.83000004, -10.18999958, 34.04000092, ..., -19.72 , -35.82999992, -20.44999999], @@ -720,7 +720,7 @@ result. [-38.83000004, -30.18999958, 14.04000092, ..., -39.72 , -55.82999992, -40.44999999], [-48.83000004, -40.18999958, 4.04000092, ..., -49.72 , - -65.82999992, -50.44999999]])
[5248 values with dtype=float64]
[5248 values with dtype=float64]
array([ 0, 1, 2, ..., 5245, 5246, 5247])
array([1, 2, 3, 4, 5])
PandasIndex(RangeIndex(start=0, stop=5248, step=1, name='mesh2d_nFaces'))
PandasIndex(Index([1, 2, 3, 4, 5], dtype='int64', name='layer'))
[5248 values with dtype=float64]
[5248 values with dtype=float64]
array([ 0, 1, 2, ..., 5245, 5246, 5247])
array([1, 2, 3, 4, 5])
PandasIndex(RangeIndex(start=0, stop=5248, step=1, name='mesh2d_nFaces'))
PandasIndex(Index([1, 2, 3, 4, 5], dtype='int64', name='layer'))
array([[ 98.73378481, 24.75605825, nan, nan, + * mesh2d_nFaces (mesh2d_nFaces) int64 0 1 2 3 4 5 6 ... 91 92 93 94 95 96 97
array([[ 98.73378481, 24.75605825, nan, nan, nan, nan, 28.6866454 , 21.59076039, nan, nan, -10.30473318, -12.46283808, nan, nan, 1.98885124, -0.45315257, @@ -1193,12 +1193,12 @@ all additional dimensions. -50.05098298, -50.91804551, -39.44818058, -44.02645019, -34.95904013, -31.75848616, -53.71649682, -47.7613762 , -46.45744354, -42.33120932, -51.24098772, -50.25680056, - -45.92794405, -39.50867478]])
array([1, 2, 3, 4, 5])
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, + -45.92794405, -39.50867478]])
array([1, 2, 3, 4, 5])
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, - 90, 91, 92, 93, 94, 95, 96, 97])
PandasIndex(Index([1, 2, 3, 4, 5], dtype='int64', name='layer'))
PandasIndex(RangeIndex(start=0, stop=98, step=1, name='mesh2d_nFaces'))
PandasIndex(Index([1, 2, 3, 4, 5], dtype='int64', name='layer'))
PandasIndex(RangeIndex(start=0, stop=98, step=1, name='mesh2d_nFaces'))
00:02.345 total execution time for examples-dev files:
+00:01.580 total execution time for examples-dev files: