-
Notifications
You must be signed in to change notification settings - Fork 0
/
check-integrity.c
2916 lines (2624 loc) · 88.3 KB
/
check-integrity.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STRATO AG 2011. All rights reserved.
*/
/*
* This module can be used to catch cases when the apfs kernel
* code executes write requests to the disk that bring the file
* system in an inconsistent state. In such a state, a power-loss
* or kernel panic event would cause that the data on disk is
* lost or at least damaged.
*
* Code is added that examines all block write requests during
* runtime (including writes of the super block). Three rules
* are verified and an error is printed on violation of the
* rules:
* 1. It is not allowed to write a disk block which is
* currently referenced by the super block (either directly
* or indirectly).
* 2. When a super block is written, it is verified that all
* referenced (directly or indirectly) blocks fulfill the
* following requirements:
* 2a. All referenced blocks have either been present when
* the file system was mounted, (i.e., they have been
* referenced by the super block) or they have been
* written since then and the write completion callback
* was called and no write error was indicated and a
* FLUSH request to the device where these blocks are
* located was received and completed.
* 2b. All referenced blocks need to have a generation
* number which is equal to the parent's number.
*
* One issue that was found using this module was that the log
* tree on disk became temporarily corrupted because disk blocks
* that had been in use for the log tree had been freed and
* reused too early, while being referenced by the written super
* block.
*
* The search term in the kernel log that can be used to filter
* on the existence of detected integrity issues is
* "apfs: attempt".
*
* The integrity check is enabled via mount options. These
* mount options are only supported if the integrity check
* tool is compiled by defining APFS_FS_CHECK_INTEGRITY.
*
* Example #1, apply integrity checks to all metadata:
* mount /dev/sdb1 /mnt -o check_int
*
* Example #2, apply integrity checks to all metadata and
* to data extents:
* mount /dev/sdb1 /mnt -o check_int_data
*
* Example #3, apply integrity checks to all metadata and dump
* the tree that the super block references to kernel messages
* each time after a super block was written:
* mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
*
* If the integrity check tool is included and activated in
* the mount options, plenty of kernel memory is used, and
* plenty of additional CPU cycles are spent. Enabling this
* functionality is not intended for normal use. In most
* cases, unless you are a apfs developer who needs to verify
* the integrity of (super)-block write requests, do not
* enable the config option APFS_FS_CHECK_INTEGRITY to
* include and compile the integrity check tool.
*
* Expect millions of lines of information in the kernel log with an
* enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
* kernel config to at least 26 (which is 64MB). Usually the value is
* limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
* changed like this before LOG_BUF_SHIFT can be set to a high value:
* config LOG_BUF_SHIFT
* int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
* range 12 30
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <crypto/hash.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "extent_io.h"
#include "volumes.h"
#include "print-tree.h"
#include "locking.h"
#include "check-integrity.h"
#include "rcu-string.h"
#include "compression.h"
#define APFSIC_BLOCK_HASHTABLE_SIZE 0x10000
#define APFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
#define APFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
#define APFSIC_BLOCK_MAGIC_NUMBER 0x14491051
#define APFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
#define APFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
#define APFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
#define APFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
* excluding " [...]" */
#define APFSIC_GENERATION_UNKNOWN ((u64)-1)
/*
* The definition of the bitmask fields for the print_mask.
* They are specified with the mount option check_integrity_print_mask.
*/
#define APFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
#define APFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
#define APFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
#define APFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
#define APFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
#define APFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
#define APFSIC_PRINT_MASK_VERBOSE 0x00000040
#define APFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
#define APFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
#define APFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
#define APFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
#define APFSIC_PRINT_MASK_NUM_COPIES 0x00000800
#define APFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
#define APFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
struct apfsic_dev_state;
struct apfsic_state;
struct apfsic_block {
u32 magic_num; /* only used for debug purposes */
unsigned int is_metadata:1; /* if it is meta-data, not data-data */
unsigned int is_superblock:1; /* if it is one of the superblocks */
unsigned int is_iodone:1; /* if is done by lower subsystem */
unsigned int iodone_w_error:1; /* error was indicated to endio */
unsigned int never_written:1; /* block was added because it was
* referenced, not because it was
* written */
unsigned int mirror_num; /* large enough to hold
* APFS_SUPER_MIRROR_MAX */
struct apfsic_dev_state *dev_state;
u64 dev_bytenr; /* key, physical byte num on disk */
u64 logical_bytenr; /* logical byte num on disk */
u64 generation;
struct apfs_disk_key disk_key; /* extra info to print in case of
* issues, will not always be correct */
struct list_head collision_resolving_node; /* list node */
struct list_head all_blocks_node; /* list node */
/* the following two lists contain block_link items */
struct list_head ref_to_list; /* list */
struct list_head ref_from_list; /* list */
struct apfsic_block *next_in_same_bio;
void *orig_bio_private;
bio_end_io_t *orig_bio_end_io;
int submit_bio_bh_rw;
u64 flush_gen; /* only valid if !never_written */
};
/*
* Elements of this type are allocated dynamically and required because
* each block object can refer to and can be ref from multiple blocks.
* The key to lookup them in the hashtable is the dev_bytenr of
* the block ref to plus the one from the block referred from.
* The fact that they are searchable via a hashtable and that a
* ref_cnt is maintained is not required for the apfs integrity
* check algorithm itself, it is only used to make the output more
* beautiful in case that an error is detected (an error is defined
* as a write operation to a block while that block is still referenced).
*/
struct apfsic_block_link {
u32 magic_num; /* only used for debug purposes */
u32 ref_cnt;
struct list_head node_ref_to; /* list node */
struct list_head node_ref_from; /* list node */
struct list_head collision_resolving_node; /* list node */
struct apfsic_block *block_ref_to;
struct apfsic_block *block_ref_from;
u64 parent_generation;
};
struct apfsic_dev_state {
u32 magic_num; /* only used for debug purposes */
struct block_device *bdev;
struct apfsic_state *state;
struct list_head collision_resolving_node; /* list node */
struct apfsic_block dummy_block_for_bio_bh_flush;
u64 last_flush_gen;
char name[BDEVNAME_SIZE];
};
struct apfsic_block_hashtable {
struct list_head table[APFSIC_BLOCK_HASHTABLE_SIZE];
};
struct apfsic_block_link_hashtable {
struct list_head table[APFSIC_BLOCK_LINK_HASHTABLE_SIZE];
};
struct apfsic_dev_state_hashtable {
struct list_head table[APFSIC_DEV2STATE_HASHTABLE_SIZE];
};
struct apfsic_block_data_ctx {
u64 start; /* virtual bytenr */
u64 dev_bytenr; /* physical bytenr on device */
u32 len;
struct apfsic_dev_state *dev;
char **datav;
struct page **pagev;
void *mem_to_free;
};
/* This structure is used to implement recursion without occupying
* any stack space, refer to apfsic_process_metablock() */
struct apfsic_stack_frame {
u32 magic;
u32 nr;
int error;
int i;
int limit_nesting;
int num_copies;
int mirror_num;
struct apfsic_block *block;
struct apfsic_block_data_ctx *block_ctx;
struct apfsic_block *next_block;
struct apfsic_block_data_ctx next_block_ctx;
struct apfs_header *hdr;
struct apfsic_stack_frame *prev;
};
/* Some state per mounted filesystem */
struct apfsic_state {
u32 print_mask;
int include_extent_data;
struct list_head all_blocks_list;
struct apfsic_block_hashtable block_hashtable;
struct apfsic_block_link_hashtable block_link_hashtable;
struct apfs_fs_info *fs_info;
u64 max_superblock_generation;
struct apfsic_block *latest_superblock;
u32 metablock_size;
u32 datablock_size;
};
static void apfsic_block_init(struct apfsic_block *b);
static struct apfsic_block *apfsic_block_alloc(void);
static void apfsic_block_free(struct apfsic_block *b);
static void apfsic_block_link_init(struct apfsic_block_link *n);
static struct apfsic_block_link *apfsic_block_link_alloc(void);
static void apfsic_block_link_free(struct apfsic_block_link *n);
static void apfsic_dev_state_init(struct apfsic_dev_state *ds);
static struct apfsic_dev_state *apfsic_dev_state_alloc(void);
static void apfsic_dev_state_free(struct apfsic_dev_state *ds);
static void apfsic_block_hashtable_init(struct apfsic_block_hashtable *h);
static void apfsic_block_hashtable_add(struct apfsic_block *b,
struct apfsic_block_hashtable *h);
static void apfsic_block_hashtable_remove(struct apfsic_block *b);
static struct apfsic_block *apfsic_block_hashtable_lookup(
struct block_device *bdev,
u64 dev_bytenr,
struct apfsic_block_hashtable *h);
static void apfsic_block_link_hashtable_init(
struct apfsic_block_link_hashtable *h);
static void apfsic_block_link_hashtable_add(
struct apfsic_block_link *l,
struct apfsic_block_link_hashtable *h);
static void apfsic_block_link_hashtable_remove(struct apfsic_block_link *l);
static struct apfsic_block_link *apfsic_block_link_hashtable_lookup(
struct block_device *bdev_ref_to,
u64 dev_bytenr_ref_to,
struct block_device *bdev_ref_from,
u64 dev_bytenr_ref_from,
struct apfsic_block_link_hashtable *h);
static void apfsic_dev_state_hashtable_init(
struct apfsic_dev_state_hashtable *h);
static void apfsic_dev_state_hashtable_add(
struct apfsic_dev_state *ds,
struct apfsic_dev_state_hashtable *h);
static void apfsic_dev_state_hashtable_remove(struct apfsic_dev_state *ds);
static struct apfsic_dev_state *apfsic_dev_state_hashtable_lookup(dev_t dev,
struct apfsic_dev_state_hashtable *h);
static struct apfsic_stack_frame *apfsic_stack_frame_alloc(void);
static void apfsic_stack_frame_free(struct apfsic_stack_frame *sf);
static int apfsic_process_superblock(struct apfsic_state *state,
struct apfs_fs_devices *fs_devices);
static int apfsic_process_metablock(struct apfsic_state *state,
struct apfsic_block *block,
struct apfsic_block_data_ctx *block_ctx,
int limit_nesting, int force_iodone_flag);
static void apfsic_read_from_block_data(
struct apfsic_block_data_ctx *block_ctx,
void *dst, u32 offset, size_t len);
static int apfsic_create_link_to_next_block(
struct apfsic_state *state,
struct apfsic_block *block,
struct apfsic_block_data_ctx
*block_ctx, u64 next_bytenr,
int limit_nesting,
struct apfsic_block_data_ctx *next_block_ctx,
struct apfsic_block **next_blockp,
int force_iodone_flag,
int *num_copiesp, int *mirror_nump,
struct apfs_disk_key *disk_key,
u64 parent_generation);
static int apfsic_handle_extent_data(struct apfsic_state *state,
struct apfsic_block *block,
struct apfsic_block_data_ctx *block_ctx,
u32 item_offset, int force_iodone_flag);
static int apfsic_map_block(struct apfsic_state *state, u64 bytenr, u32 len,
struct apfsic_block_data_ctx *block_ctx_out,
int mirror_num);
static void apfsic_release_block_ctx(struct apfsic_block_data_ctx *block_ctx);
static int apfsic_read_block(struct apfsic_state *state,
struct apfsic_block_data_ctx *block_ctx);
static void apfsic_dump_database(struct apfsic_state *state);
static int apfsic_test_for_metadata(struct apfsic_state *state,
char **datav, unsigned int num_pages);
static void apfsic_process_written_block(struct apfsic_dev_state *dev_state,
u64 dev_bytenr, char **mapped_datav,
unsigned int num_pages,
struct bio *bio, int *bio_is_patched,
int submit_bio_bh_rw);
static int apfsic_process_written_superblock(
struct apfsic_state *state,
struct apfsic_block *const block,
struct apfs_super_block *const super_hdr);
static void apfsic_bio_end_io(struct bio *bp);
static int apfsic_is_block_ref_by_superblock(const struct apfsic_state *state,
const struct apfsic_block *block,
int recursion_level);
static int apfsic_check_all_ref_blocks(struct apfsic_state *state,
struct apfsic_block *const block,
int recursion_level);
static void apfsic_print_add_link(const struct apfsic_state *state,
const struct apfsic_block_link *l);
static void apfsic_print_rem_link(const struct apfsic_state *state,
const struct apfsic_block_link *l);
static char apfsic_get_block_type(const struct apfsic_state *state,
const struct apfsic_block *block);
static void apfsic_dump_tree(const struct apfsic_state *state);
static void apfsic_dump_tree_sub(const struct apfsic_state *state,
const struct apfsic_block *block,
int indent_level);
static struct apfsic_block_link *apfsic_block_link_lookup_or_add(
struct apfsic_state *state,
struct apfsic_block_data_ctx *next_block_ctx,
struct apfsic_block *next_block,
struct apfsic_block *from_block,
u64 parent_generation);
static struct apfsic_block *apfsic_block_lookup_or_add(
struct apfsic_state *state,
struct apfsic_block_data_ctx *block_ctx,
const char *additional_string,
int is_metadata,
int is_iodone,
int never_written,
int mirror_num,
int *was_created);
static int apfsic_process_superblock_dev_mirror(
struct apfsic_state *state,
struct apfsic_dev_state *dev_state,
struct apfs_device *device,
int superblock_mirror_num,
struct apfsic_dev_state **selected_dev_state,
struct apfs_super_block *selected_super);
static struct apfsic_dev_state *apfsic_dev_state_lookup(dev_t dev);
static void apfsic_cmp_log_and_dev_bytenr(struct apfsic_state *state,
u64 bytenr,
struct apfsic_dev_state *dev_state,
u64 dev_bytenr);
static struct mutex apfsic_mutex;
static int apfsic_is_initialized;
static struct apfsic_dev_state_hashtable apfsic_dev_state_hashtable;
static void apfsic_block_init(struct apfsic_block *b)
{
b->magic_num = APFSIC_BLOCK_MAGIC_NUMBER;
b->dev_state = NULL;
b->dev_bytenr = 0;
b->logical_bytenr = 0;
b->generation = APFSIC_GENERATION_UNKNOWN;
b->disk_key.objectid = 0;
b->disk_key.type = 0;
b->disk_key.offset = 0;
b->is_metadata = 0;
b->is_superblock = 0;
b->is_iodone = 0;
b->iodone_w_error = 0;
b->never_written = 0;
b->mirror_num = 0;
b->next_in_same_bio = NULL;
b->orig_bio_private = NULL;
b->orig_bio_end_io = NULL;
INIT_LIST_HEAD(&b->collision_resolving_node);
INIT_LIST_HEAD(&b->all_blocks_node);
INIT_LIST_HEAD(&b->ref_to_list);
INIT_LIST_HEAD(&b->ref_from_list);
b->submit_bio_bh_rw = 0;
b->flush_gen = 0;
}
static struct apfsic_block *apfsic_block_alloc(void)
{
struct apfsic_block *b;
b = kzalloc(sizeof(*b), GFP_NOFS);
if (NULL != b)
apfsic_block_init(b);
return b;
}
static void apfsic_block_free(struct apfsic_block *b)
{
BUG_ON(!(NULL == b || APFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
kfree(b);
}
static void apfsic_block_link_init(struct apfsic_block_link *l)
{
l->magic_num = APFSIC_BLOCK_LINK_MAGIC_NUMBER;
l->ref_cnt = 1;
INIT_LIST_HEAD(&l->node_ref_to);
INIT_LIST_HEAD(&l->node_ref_from);
INIT_LIST_HEAD(&l->collision_resolving_node);
l->block_ref_to = NULL;
l->block_ref_from = NULL;
}
static struct apfsic_block_link *apfsic_block_link_alloc(void)
{
struct apfsic_block_link *l;
l = kzalloc(sizeof(*l), GFP_NOFS);
if (NULL != l)
apfsic_block_link_init(l);
return l;
}
static void apfsic_block_link_free(struct apfsic_block_link *l)
{
BUG_ON(!(NULL == l || APFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
kfree(l);
}
static void apfsic_dev_state_init(struct apfsic_dev_state *ds)
{
ds->magic_num = APFSIC_DEV2STATE_MAGIC_NUMBER;
ds->bdev = NULL;
ds->state = NULL;
ds->name[0] = '\0';
INIT_LIST_HEAD(&ds->collision_resolving_node);
ds->last_flush_gen = 0;
apfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
ds->dummy_block_for_bio_bh_flush.dev_state = ds;
}
static struct apfsic_dev_state *apfsic_dev_state_alloc(void)
{
struct apfsic_dev_state *ds;
ds = kzalloc(sizeof(*ds), GFP_NOFS);
if (NULL != ds)
apfsic_dev_state_init(ds);
return ds;
}
static void apfsic_dev_state_free(struct apfsic_dev_state *ds)
{
BUG_ON(!(NULL == ds ||
APFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
kfree(ds);
}
static void apfsic_block_hashtable_init(struct apfsic_block_hashtable *h)
{
int i;
for (i = 0; i < APFSIC_BLOCK_HASHTABLE_SIZE; i++)
INIT_LIST_HEAD(h->table + i);
}
static void apfsic_block_hashtable_add(struct apfsic_block *b,
struct apfsic_block_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)(b->dev_bytenr >> 16)) ^
((unsigned int)((uintptr_t)b->dev_state->bdev))) &
(APFSIC_BLOCK_HASHTABLE_SIZE - 1);
list_add(&b->collision_resolving_node, h->table + hashval);
}
static void apfsic_block_hashtable_remove(struct apfsic_block *b)
{
list_del(&b->collision_resolving_node);
}
static struct apfsic_block *apfsic_block_hashtable_lookup(
struct block_device *bdev,
u64 dev_bytenr,
struct apfsic_block_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)(dev_bytenr >> 16)) ^
((unsigned int)((uintptr_t)bdev))) &
(APFSIC_BLOCK_HASHTABLE_SIZE - 1);
struct apfsic_block *b;
list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
return b;
}
return NULL;
}
static void apfsic_block_link_hashtable_init(
struct apfsic_block_link_hashtable *h)
{
int i;
for (i = 0; i < APFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
INIT_LIST_HEAD(h->table + i);
}
static void apfsic_block_link_hashtable_add(
struct apfsic_block_link *l,
struct apfsic_block_link_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
& (APFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
BUG_ON(NULL == l->block_ref_to);
BUG_ON(NULL == l->block_ref_from);
list_add(&l->collision_resolving_node, h->table + hashval);
}
static void apfsic_block_link_hashtable_remove(struct apfsic_block_link *l)
{
list_del(&l->collision_resolving_node);
}
static struct apfsic_block_link *apfsic_block_link_hashtable_lookup(
struct block_device *bdev_ref_to,
u64 dev_bytenr_ref_to,
struct block_device *bdev_ref_from,
u64 dev_bytenr_ref_from,
struct apfsic_block_link_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)(dev_bytenr_ref_to >> 16)) ^
((unsigned int)(dev_bytenr_ref_from >> 16)) ^
((unsigned int)((uintptr_t)bdev_ref_to)) ^
((unsigned int)((uintptr_t)bdev_ref_from))) &
(APFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
struct apfsic_block_link *l;
list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
BUG_ON(NULL == l->block_ref_to);
BUG_ON(NULL == l->block_ref_from);
if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
l->block_ref_from->dev_state->bdev == bdev_ref_from &&
l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
return l;
}
return NULL;
}
static void apfsic_dev_state_hashtable_init(
struct apfsic_dev_state_hashtable *h)
{
int i;
for (i = 0; i < APFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
INIT_LIST_HEAD(h->table + i);
}
static void apfsic_dev_state_hashtable_add(
struct apfsic_dev_state *ds,
struct apfsic_dev_state_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
(APFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
list_add(&ds->collision_resolving_node, h->table + hashval);
}
static void apfsic_dev_state_hashtable_remove(struct apfsic_dev_state *ds)
{
list_del(&ds->collision_resolving_node);
}
static struct apfsic_dev_state *apfsic_dev_state_hashtable_lookup(dev_t dev,
struct apfsic_dev_state_hashtable *h)
{
const unsigned int hashval =
dev & (APFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
struct apfsic_dev_state *ds;
list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
if (ds->bdev->bd_dev == dev)
return ds;
}
return NULL;
}
static int apfsic_process_superblock(struct apfsic_state *state,
struct apfs_fs_devices *fs_devices)
{
struct apfs_super_block *selected_super;
struct list_head *dev_head = &fs_devices->devices;
struct apfs_device *device;
struct apfsic_dev_state *selected_dev_state = NULL;
int ret = 0;
int pass;
selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
if (!selected_super)
return -ENOMEM;
list_for_each_entry(device, dev_head, dev_list) {
int i;
struct apfsic_dev_state *dev_state;
if (!device->bdev || !device->name)
continue;
dev_state = apfsic_dev_state_lookup(device->bdev->bd_dev);
BUG_ON(NULL == dev_state);
for (i = 0; i < APFS_SUPER_MIRROR_MAX; i++) {
ret = apfsic_process_superblock_dev_mirror(
state, dev_state, device, i,
&selected_dev_state, selected_super);
if (0 != ret && 0 == i) {
kfree(selected_super);
return ret;
}
}
}
if (NULL == state->latest_superblock) {
pr_info("apfsic: no superblock found!\n");
kfree(selected_super);
return -1;
}
for (pass = 0; pass < 3; pass++) {
int num_copies;
int mirror_num;
u64 next_bytenr;
switch (pass) {
case 0:
next_bytenr = apfs_super_root(selected_super);
if (state->print_mask &
APFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
pr_info("root@%llu\n", next_bytenr);
break;
case 1:
next_bytenr = apfs_super_chunk_root(selected_super);
if (state->print_mask &
APFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
pr_info("chunk@%llu\n", next_bytenr);
break;
case 2:
next_bytenr = apfs_super_log_root(selected_super);
if (0 == next_bytenr)
continue;
if (state->print_mask &
APFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
pr_info("log@%llu\n", next_bytenr);
break;
}
num_copies = apfs_num_copies(state->fs_info, next_bytenr,
state->metablock_size);
if (state->print_mask & APFSIC_PRINT_MASK_NUM_COPIES)
pr_info("num_copies(log_bytenr=%llu) = %d\n",
next_bytenr, num_copies);
for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
struct apfsic_block *next_block;
struct apfsic_block_data_ctx tmp_next_block_ctx;
struct apfsic_block_link *l;
ret = apfsic_map_block(state, next_bytenr,
state->metablock_size,
&tmp_next_block_ctx,
mirror_num);
if (ret) {
pr_info("apfsic: apfsic_map_block(root @%llu, mirror %d) failed!\n",
next_bytenr, mirror_num);
kfree(selected_super);
return -1;
}
next_block = apfsic_block_hashtable_lookup(
tmp_next_block_ctx.dev->bdev,
tmp_next_block_ctx.dev_bytenr,
&state->block_hashtable);
BUG_ON(NULL == next_block);
l = apfsic_block_link_hashtable_lookup(
tmp_next_block_ctx.dev->bdev,
tmp_next_block_ctx.dev_bytenr,
state->latest_superblock->dev_state->
bdev,
state->latest_superblock->dev_bytenr,
&state->block_link_hashtable);
BUG_ON(NULL == l);
ret = apfsic_read_block(state, &tmp_next_block_ctx);
if (ret < (int)PAGE_SIZE) {
pr_info("apfsic: read @logical %llu failed!\n",
tmp_next_block_ctx.start);
apfsic_release_block_ctx(&tmp_next_block_ctx);
kfree(selected_super);
return -1;
}
ret = apfsic_process_metablock(state,
next_block,
&tmp_next_block_ctx,
APFS_MAX_LEVEL + 3, 1);
apfsic_release_block_ctx(&tmp_next_block_ctx);
}
}
kfree(selected_super);
return ret;
}
static int apfsic_process_superblock_dev_mirror(
struct apfsic_state *state,
struct apfsic_dev_state *dev_state,
struct apfs_device *device,
int superblock_mirror_num,
struct apfsic_dev_state **selected_dev_state,
struct apfs_super_block *selected_super)
{
struct apfs_fs_info *fs_info = state->fs_info;
struct apfs_super_block *super_tmp;
u64 dev_bytenr;
struct apfsic_block *superblock_tmp;
int pass;
struct block_device *const superblock_bdev = device->bdev;
struct page *page;
struct address_space *mapping = superblock_bdev->bd_inode->i_mapping;
int ret = 0;
/* super block bytenr is always the unmapped device bytenr */
dev_bytenr = apfs_sb_offset(superblock_mirror_num);
if (dev_bytenr + APFS_SUPER_INFO_SIZE > device->commit_total_bytes)
return -1;
page = read_cache_page_gfp(mapping, dev_bytenr >> PAGE_SHIFT, GFP_NOFS);
if (IS_ERR(page))
return -1;
super_tmp = page_address(page);
if (apfs_super_bytenr(super_tmp) != dev_bytenr ||
apfs_super_magic(super_tmp) != APFS_MAGIC ||
memcmp(device->uuid, super_tmp->dev_item.uuid, APFS_UUID_SIZE) ||
apfs_super_nodesize(super_tmp) != state->metablock_size ||
apfs_super_sectorsize(super_tmp) != state->datablock_size) {
ret = 0;
goto out;
}
superblock_tmp =
apfsic_block_hashtable_lookup(superblock_bdev,
dev_bytenr,
&state->block_hashtable);
if (NULL == superblock_tmp) {
superblock_tmp = apfsic_block_alloc();
if (NULL == superblock_tmp) {
ret = -1;
goto out;
}
/* for superblock, only the dev_bytenr makes sense */
superblock_tmp->dev_bytenr = dev_bytenr;
superblock_tmp->dev_state = dev_state;
superblock_tmp->logical_bytenr = dev_bytenr;
superblock_tmp->generation = apfs_super_generation(super_tmp);
superblock_tmp->is_metadata = 1;
superblock_tmp->is_superblock = 1;
superblock_tmp->is_iodone = 1;
superblock_tmp->never_written = 0;
superblock_tmp->mirror_num = 1 + superblock_mirror_num;
if (state->print_mask & APFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
apfs_info_in_rcu(fs_info,
"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
superblock_bdev,
rcu_str_deref(device->name), dev_bytenr,
dev_state->name, dev_bytenr,
superblock_mirror_num);
list_add(&superblock_tmp->all_blocks_node,
&state->all_blocks_list);
apfsic_block_hashtable_add(superblock_tmp,
&state->block_hashtable);
}
/* select the one with the highest generation field */
if (apfs_super_generation(super_tmp) >
state->max_superblock_generation ||
0 == state->max_superblock_generation) {
memcpy(selected_super, super_tmp, sizeof(*selected_super));
*selected_dev_state = dev_state;
state->max_superblock_generation =
apfs_super_generation(super_tmp);
state->latest_superblock = superblock_tmp;
}
for (pass = 0; pass < 3; pass++) {
u64 next_bytenr;
int num_copies;
int mirror_num;
const char *additional_string = NULL;
struct apfs_disk_key tmp_disk_key;
tmp_disk_key.type = APFS_ROOT_ITEM_KEY;
tmp_disk_key.offset = 0;
switch (pass) {
case 0:
apfs_set_disk_key_objectid(&tmp_disk_key,
APFS_ROOT_TREE_OBJECTID);
additional_string = "initial root ";
next_bytenr = apfs_super_root(super_tmp);
break;
case 1:
apfs_set_disk_key_objectid(&tmp_disk_key,
APFS_CHUNK_TREE_OBJECTID);
additional_string = "initial chunk ";
next_bytenr = apfs_super_chunk_root(super_tmp);
break;
case 2:
apfs_set_disk_key_objectid(&tmp_disk_key,
APFS_TREE_LOG_OBJECTID);
additional_string = "initial log ";
next_bytenr = apfs_super_log_root(super_tmp);
if (0 == next_bytenr)
continue;
break;
}
num_copies = apfs_num_copies(fs_info, next_bytenr,
state->metablock_size);
if (state->print_mask & APFSIC_PRINT_MASK_NUM_COPIES)
pr_info("num_copies(log_bytenr=%llu) = %d\n",
next_bytenr, num_copies);
for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
struct apfsic_block *next_block;
struct apfsic_block_data_ctx tmp_next_block_ctx;
struct apfsic_block_link *l;
if (apfsic_map_block(state, next_bytenr,
state->metablock_size,
&tmp_next_block_ctx,
mirror_num)) {
pr_info("apfsic: apfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
next_bytenr, mirror_num);
ret = -1;
goto out;
}
next_block = apfsic_block_lookup_or_add(
state, &tmp_next_block_ctx,
additional_string, 1, 1, 0,
mirror_num, NULL);
if (NULL == next_block) {
apfsic_release_block_ctx(&tmp_next_block_ctx);
ret = -1;
goto out;
}
next_block->disk_key = tmp_disk_key;
next_block->generation = APFSIC_GENERATION_UNKNOWN;
l = apfsic_block_link_lookup_or_add(
state, &tmp_next_block_ctx,
next_block, superblock_tmp,
APFSIC_GENERATION_UNKNOWN);
apfsic_release_block_ctx(&tmp_next_block_ctx);
if (NULL == l) {
ret = -1;
goto out;
}
}
}
if (state->print_mask & APFSIC_PRINT_MASK_INITIAL_ALL_TREES)
apfsic_dump_tree_sub(state, superblock_tmp, 0);
out:
put_page(page);
return ret;
}
static struct apfsic_stack_frame *apfsic_stack_frame_alloc(void)
{
struct apfsic_stack_frame *sf;
sf = kzalloc(sizeof(*sf), GFP_NOFS);
if (sf)
sf->magic = APFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
return sf;
}
static void apfsic_stack_frame_free(struct apfsic_stack_frame *sf)
{
BUG_ON(!(NULL == sf ||
APFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
kfree(sf);
}
static noinline_for_stack int apfsic_process_metablock(
struct apfsic_state *state,
struct apfsic_block *const first_block,
struct apfsic_block_data_ctx *const first_block_ctx,
int first_limit_nesting, int force_iodone_flag)
{
struct apfsic_stack_frame initial_stack_frame = { 0 };
struct apfsic_stack_frame *sf;
struct apfsic_stack_frame *next_stack;
struct apfs_header *const first_hdr =
(struct apfs_header *)first_block_ctx->datav[0];
BUG_ON(!first_hdr);
sf = &initial_stack_frame;
sf->error = 0;
sf->i = -1;
sf->limit_nesting = first_limit_nesting;
sf->block = first_block;
sf->block_ctx = first_block_ctx;
sf->next_block = NULL;
sf->hdr = first_hdr;
sf->prev = NULL;
continue_with_new_stack_frame:
sf->block->generation = apfs_stack_header_generation(sf->hdr);
if (0 == sf->hdr->level) {
struct apfs_leaf *const leafhdr =
(struct apfs_leaf *)sf->hdr;
if (-1 == sf->i) {
sf->nr = apfs_stack_header_nritems(&leafhdr->header);
if (state->print_mask & APFSIC_PRINT_MASK_VERBOSE)
pr_info("leaf %llu items %d generation %llu owner %llu\n",
sf->block_ctx->start, sf->nr,
apfs_stack_header_generation(
&leafhdr->header),
apfs_stack_header_owner(
&leafhdr->header));
}
continue_with_current_leaf_stack_frame:
if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
sf->i++;
sf->num_copies = 0;
}
if (sf->i < sf->nr) {
struct apfs_item disk_item;
u32 disk_item_offset =
(uintptr_t)(leafhdr->items + sf->i) -
(uintptr_t)leafhdr;
struct apfs_disk_key *disk_key;
u8 type;
u32 item_offset;
u32 item_size;
if (disk_item_offset + sizeof(struct apfs_item) >
sf->block_ctx->len) {
leaf_item_out_of_bounce_error:
pr_info("apfsic: leaf item out of bounce at logical %llu, dev %s\n",
sf->block_ctx->start,
sf->block_ctx->dev->name);
goto one_stack_frame_backwards;
}
apfsic_read_from_block_data(sf->block_ctx,
&disk_item,
disk_item_offset,
sizeof(struct apfs_item));
item_offset = apfs_stack_item_offset(&disk_item);
item_size = apfs_stack_item_size(&disk_item);