Skip to content
This repository has been archived by the owner on Jul 29, 2022. It is now read-only.

Latest commit

 

History

History
168 lines (135 loc) · 5.16 KB

README.rst

File metadata and controls

168 lines (135 loc) · 5.16 KB

grafanalib

https://circleci.com/gh/weaveworks/grafanalib.svg?style=shield

Do you like Grafana but wish you could version your dashboard configuration? Do you find yourself repeating common patterns? If so, grafanalib is for you.

grafanalib lets you generate Grafana dashboards from simple Python scripts.

Writing dashboards

The following will configure a dashboard with a single row, with one QPS graph broken down by status code and another latency graph showing median and 99th percentile latency:

from grafanalib.core import *


dashboard = Dashboard(
  title="Frontend Stats",
  rows=[
    Row(panels=[
      Graph(
        title="Frontend QPS",
        dataSource='My Prometheus',
        targets=[
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"1.."}[1m]))',
            legendFormat="1xx",
            refId='A',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"2.."}[1m]))',
            legendFormat="2xx",
            refId='B',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"3.."}[1m]))',
            legendFormat="3xx",
            refId='C',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"4.."}[1m]))',
            legendFormat="4xx",
            refId='D',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))',
            legendFormat="5xx",
            refId='E',
          ),
        ],
        yAxes=[
          YAxis(format=OPS_FORMAT),
          YAxis(format=SHORT_FORMAT),
        ],
        alert=Alert(
          name="Too many 500s on Nginx",
          message="More than 5 QPS of 500s on Nginx for 5 minutes",
          alertConditions=[
            AlertCondition(
              Target(
                expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))',
                legendFormat="5xx",
                refId='A',
              ),
              timeRange=TimeRange("5m", "now"),
              evaluator=GreaterThan(5),
              operator=OP_AND,
              reducerType=RTYPE_SUM,
            ),
          ],
        )
      ),
      Graph(
        title="Frontend latency",
        dataSource='My Prometheus',
        targets=[
          Target(
            expr='histogram_quantile(0.5, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
            legendFormat="0.5 quantile",
            refId='A',
          ),
          Target(
            expr='histogram_quantile(0.99, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
            legendFormat="0.99 quantile",
            refId='B',
          ),
        ],
        yAxes=single_y_axis(format=SECONDS_FORMAT),
      ),
    ]),
  ],
).auto_panel_ids()

There is a fair bit of repetition here, but once you figure out what works for your needs, you can factor that out. See our Weave-specific customizations for inspiration.

Generating dashboards

If you save the above as frontend.dashboard.py (the suffix must be .dashboard.py), you can then generate the JSON dashboard with:

$ generate-dashboard -o frontend.json frontend.dashboard.py

Installation

grafanalib is just a Python package, so:

$ pip install grafanalib

Support

This library is in its very early stages. We'll probably make changes that break backwards compatibility, although we'll try hard not to.

grafanalib works with Python 2.7, 3.4, 3.5, and 3.6.

Developing

If you're working on the project, and need to build from source, it's done as follows:

$ virtualenv .env
$ . ./.env/bin/activate
$ pip install -e .

gfdatasource

This module also provides a script and docker image which can configure grafana with new sources, or enable app plugins.

The script answers the --help with full usage information, but basic invocation looks like this:

$ <gfdatasource> --grafana-url http://grafana. datasource --data-source-url http://datasource
$ <gfdatasource> --grafana-url http://grafana. app --id my-plugin

Getting Help

If you have any questions about, feedback for or problems with grafanalib:

Your feedback is always welcome!