diff --git a/src/content/questions/comp2804/2019-fall-final/3/solution.md b/src/content/questions/comp2804/2019-fall-final/3/solution.md
index ceb86120..7c3d33e1 100644
--- a/src/content/questions/comp2804/2019-fall-final/3/solution.md
+++ b/src/content/questions/comp2804/2019-fall-final/3/solution.md
@@ -15,6 +15,9 @@ Let's break me down
The remaining 40 positions can be any of the 2 letters: $ 2^{40} $
Thus, the total number of strings is $ \binom{85}{15} \cdot \binom{70}{30} \cdot 2^{40} $
-Now, we can determine $A \cup B$
-$ |A \cup B| = |A| + |B| - |A \cap B| $
+
+Now, we can determine $A \cup B$
+
+$ |A \cup B| = |A| + |B| - |A \cap B| $
+
$ |A \cup B| = \binom{85}{15} \cdot 3^{70} + \binom{85}{30} \cdot 3^{55} - \binom{85}{15} \cdot \binom{70}{30} \cdot 2^{40} $
diff --git a/src/content/questions/comp2804/2019-fall-final/4/solution.md b/src/content/questions/comp2804/2019-fall-final/4/solution.md
index 808d329d..1c5ab80a 100644
--- a/src/content/questions/comp2804/2019-fall-final/4/solution.md
+++ b/src/content/questions/comp2804/2019-fall-final/4/solution.md
@@ -14,6 +14,9 @@ Let's do this uwu
We choose 12 of the 50 cider bottles: $ \binom{50}{12} $
$|A \cap B| = \binom{20}{12} \cdot \binom{50}{12} $
-Now, we can determine $A \cup B$
-$ |A \cup B| = |A| + |B| - |A \cap B| $
+
+Now, we can determine $A \cup B$
+
+$ |A \cup B| = |A| + |B| - |A \cap B| $
+
$ |A \cup B| = \binom{20}{12} \cdot 2^{50} + \binom{50}{12} \cdot 2^{20} - \binom{20}{12} \cdot \binom{50}{12} $
diff --git a/src/content/questions/comp2804/2019-fall-final/5/solution.md b/src/content/questions/comp2804/2019-fall-final/5/solution.md
index f642158f..911d3caf 100644
--- a/src/content/questions/comp2804/2019-fall-final/5/solution.md
+++ b/src/content/questions/comp2804/2019-fall-final/5/solution.md
@@ -14,6 +14,9 @@
We choose any subset of the 50 cider bottles: $ 2^{50} $
$ |C| = \binom{20}{2} \cdot 2^{50} = 190 \cdot 2^{50} $
-Now, we can determine the number of subsets that contain at least 3 beer bottles
-$ |S| - |A| - |B| - |C| $
+
+Now, we can determine the number of subsets that contain at least 3 beer bottles
+
+$ |S| - |A| - |B| - |C| $
+
$ = 2^{70} - 2^{50} - 20 \cdot 2^{50} -\binom{20}{2} \cdot 2^{50} $
diff --git a/src/content/questions/comp2804/2019-fall-final/7/solution.md b/src/content/questions/comp2804/2019-fall-final/7/solution.md
index 845a2326..d82a8602 100644
--- a/src/content/questions/comp2804/2019-fall-final/7/solution.md
+++ b/src/content/questions/comp2804/2019-fall-final/7/solution.md
@@ -12,6 +12,9 @@ Assuming you have a sea of bananas, let's put dividers to split them off into di