forked from samarth-robo/edges
-
Notifications
You must be signed in to change notification settings - Fork 0
/
edgesEvalImg.m
90 lines (85 loc) · 3.71 KB
/
edgesEvalImg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
function [thrs,cntR,sumR,cntP,sumP,V] = edgesEvalImg( E, G, varargin )
% Calculate edge precision/recall results for single edge image.
%
% Enhanced replacement for evaluation_bdry_image() from BSDS500 code:
% http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
% Uses same format and is fully compatible with evaluation_bdry_image.
% Given default prms results are *identical* to evaluation_bdry_image.
%
% In addition to performing the evaluation, this function can optionally
% create a visualization of the matches and errors for a given edge result.
% The visualization of edge matches V has the following color coding:
% green=true positive, blue=false positive, red=false negative
% If multiple ground truth labels are given the false negatives have
% varying strength (and true positives can match *any* ground truth).
%
% This function calls the mex file correspondPixels. Pre-compiled binaries
% for some systems are provided in /private, source for correspondPixels is
% available as part of the BSDS500 dataset (see link above). Note:
% correspondPixels is computationally expensive and very slow in practice.
%
% USAGE
% [thrs,cntR,sumR,cntP,sumP,V] = edgesEvalImg( E, G, [prms] )
%
% INPUTS
% E - [h x w] edge probability map (may be a filename)
% G - file containing a cell of ground truth boundaries
% prms - parameters (struct or name/value pairs)
% .out - [''] optional output file for writing results
% .thrs - [99] number or vector of thresholds for evaluation
% .maxDist - [.0075] maximum tolerance for edge match
% .thin - [1] if true thin boundary maps
%
% OUTPUTS
% thrs - [Kx1] vector of threshold values
% cntR,sumR - [Kx1] ratios give recall per threshold
% cntP,sumP - [Kx1] ratios give precision per threshold
% V - [hxwx3xK] visualization of edge matches
%
% EXAMPLE
%
% See also edgesEvalDir
%
% Structured Edge Detection Toolbox Version 3.01
% Code written by Piotr Dollar, 2014.
% Licensed under the MSR-LA Full Rights License [see license.txt]
% get additional parameters
dfs={ 'out','', 'thrs',99, 'maxDist',.0075, 'thin',1 };
[out,thrs,maxDist,thin] = getPrmDflt(varargin,dfs,1);
if(any(mod(thrs,1)>0)), K=length(thrs); thrs=thrs(:); else
K=thrs; thrs=linspace(1/(K+1),1-1/(K+1),K)'; end
% load edges (E) and ground truth (G)
if(all(ischar(E))), E=double(imread(E))/255; end
G=load(G); G=G.groundTruth; n=length(G);
for g=1:n, G{g}=double(G{g}.Boundaries); end
% evaluate edge result at each threshold
Z=zeros(K,1); cntR=Z; sumR=Z; cntP=Z; sumP=Z;
if(nargout>=6), V=zeros([size(E) 3 K]); end
for k = 1:K
% threshhold and thin E
E1 = double(E>=max(eps,thrs(k)));
if(thin), E1=double(bwmorph(E1,'thin',inf)); end
% compare to each ground truth in turn and accumualte
Z=zeros(size(E)); matchE=Z; matchG=Z; allG=Z;
for g = 1:n
[matchE1,matchG1] = correspondPixels(E1,G{g},maxDist);
matchE = matchE | matchE1>0;
matchG = matchG + double(matchG1>0);
allG = allG + G{g};
end
% compute recall (summed over each gt image)
cntR(k) = sum(matchG(:)); sumR(k) = sum(allG(:));
% compute precision (edges can match any gt image)
cntP(k) = nnz(matchE); sumP(k) = nnz(E1);
% optinally create visualization of matches
if(nargout<6), continue; end; cs=[1 0 0; 0 .7 0; .7 .8 1]; cs=cs-1;
FP=E1-matchE; TP=matchE; FN=(allG-matchG)/n;
for g=1:3, V(:,:,g,k)=max(0,1+FN*cs(1,g)+TP*cs(2,g)+FP*cs(3,g)); end
V(:,2:end,:,k) = min(V(:,2:end,:,k),V(:,1:end-1,:,k));
V(2:end,:,:,k) = min(V(2:end,:,:,k),V(1:end-1,:,:,k));
end
% if output file specified write results to disk
if(isempty(out)), return; end; fid=fopen(out,'w'); assert(fid~=1);
fprintf(fid,'%10g %10g %10g %10g %10g\n',[thrs cntR sumR cntP sumP]');
fclose(fid);
end