forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gemm_splitk_parallel.h
635 lines (535 loc) · 20 KB
/
gemm_splitk_parallel.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Template for GEMM performing a reduction over K partitions in parallel.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/arch/arch.h"
#include "cutlass/device_kernel.h"
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
#include "cutlass/gemm/kernel/gemm.h"
#include "cutlass/gemm/kernel/default_gemm_splitk_parallel.h"
#include "cutlass/gemm/device/default_gemm_configuration.h"
#include "cutlass/epilogue/thread/conversion_op.h"
#include "cutlass/reduction/kernel/reduce_split_k.h"
#include "cutlass/reduction/thread/reduction_operators.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace device {
////////////////////////////////////////////////////////////////////////////////
/*!
Gemm device-level operator performing parallel reduction over the K partition.
*/
template <
/// Element type for A matrix operand
typename ElementA_,
/// Layout type for A matrix operand
typename LayoutA_,
/// Element type for B matrix operand
typename ElementB_,
/// Layout type for B matrix operand
typename LayoutB_,
/// Element type for C and D matrix operands
typename ElementC_,
/// Layout type for C and D matrix operands
typename LayoutC_,
/// Element type for internal accumulation
typename ElementAccumulator_ = ElementC_,
/// Operator class tag
typename OperatorClass_ = arch::OpClassSimt,
/// Tag indicating architecture to tune for. This is the minimum SM that
/// supports the intended feature. The device kernel can be built
/// targeting any SM larger than this number.
typename ArchTag_ = arch::Sm70,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::WarpShape,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::EpilogueOutputOp,
/// Epilogue output operator
typename ConvertScaledOp_ = cutlass::epilogue::thread::Convert<
ElementAccumulator_,
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementAccumulator_,
ElementAccumulator_>::EpilogueOutputOp::kCount,
ElementAccumulator_>,
/// Reduction operator
typename ReductionOp_ = cutlass::reduction::thread::ReduceAdd<
ElementAccumulator_, typename EpilogueOutputOp_::ElementAccumulator,
EpilogueOutputOp_::kCount>,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle_ =
threadblock::GemmSplitKHorizontalThreadblockSwizzle,
/// Number of stages used in the pipelined mainloop
int Stages =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kStages,
/// Access granularity of A matrix in units of elements
int kAlignmentA =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kAlignmentA,
/// Access granularity of B matrix in units of elements
int kAlignmentB =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kAlignmentB,
/// Operation performed by GEMM
typename Operator_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::Operator>
class GemmSplitKParallel {
public:
using ElementA = ElementA_;
using LayoutA = LayoutA_;
using ElementB = ElementB_;
using LayoutB = LayoutB_;
using ElementC = ElementC_;
using LayoutC = LayoutC_;
using ElementAccumulator = ElementAccumulator_;
using OperatorClass = OperatorClass_;
using ArchTag = ArchTag_;
using ThreadblockShape = ThreadblockShape_;
using WarpShape = WarpShape_;
using InstructionShape = InstructionShape_;
using ConvertScaledOp = ConvertScaledOp_;
using EpilogueOutputOp = EpilogueOutputOp_;
using ReductionOp = ReductionOp_;
using ThreadblockSwizzle = ThreadblockSwizzle_;
using Operator = Operator_;
static int const kStages = Stages;
/// GEMM kernel
using GemmKernel = typename kernel::DefaultGemmSplitKParallel<
ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementAccumulator,
LayoutC,
ElementAccumulator,
OperatorClass,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
ConvertScaledOp,
ThreadblockSwizzle,
kStages,
Operator
>::GemmKernel;
/// Reduction kernel
using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK<
cutlass::MatrixShape<4, 32 * EpilogueOutputOp::kCount>,
EpilogueOutputOp,
ReductionOp
>;
//
//
//
/// Argument structure
struct Arguments {
//
// Data members
//
GemmCoord problem_size;
TensorRef<ElementA const, LayoutA> ref_A;
TensorRef<ElementB const, LayoutB> ref_B;
TensorRef<ElementC const, LayoutC> ref_C;
TensorRef<ElementC, LayoutC> ref_D;
typename EpilogueOutputOp::Params epilogue;
int split_k_slices;
typename ConvertScaledOp::Params convert;
typename ReductionOp::Params reduction;
//
// Methods
//
/// Default ctor
CUTLASS_HOST_DEVICE
Arguments() { }
/// Constructs an Arguments structure
CUTLASS_HOST_DEVICE
Arguments(
GemmCoord problem_size_,
TensorRef<ElementA const, LayoutA> ref_A_,
TensorRef<ElementB const, LayoutB> ref_B_,
TensorRef<ElementC const, LayoutC> ref_C_,
TensorRef<ElementC, LayoutC> ref_D_,
typename EpilogueOutputOp::Params epilogue_ =
typename EpilogueOutputOp::Params(),
int split_k_slices = 1,
typename ConvertScaledOp::Params convert_ =
typename ConvertScaledOp::Params(),
typename ReductionOp::Params reduction_ =
typename ReductionOp::Params()
):
problem_size(problem_size_),
ref_A(ref_A_),
ref_B(ref_B_),
ref_C(ref_C_),
ref_D(ref_D_),
epilogue(epilogue_),
split_k_slices(split_k_slices),
convert(convert_),
reduction(reduction_) { }
};
private:
/// Kernel parameters object
typename GemmKernel::Params gemm_params_;
/// Reduction kernel parameters object
typename ReductionKernel::Params reduction_params_;
public:
/// Constructs the GEMM.
GemmSplitKParallel() { }
/// Determines whether the GEMM can execute the given problem.
static Status can_implement(Arguments const &args) {
return Status::kSuccess;
}
/// Gets the workspace size
static size_t get_workspace_size(Arguments const &args) {
// Determine grid shape
ThreadblockSwizzle threadblock_swizzle;
cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape(
args.problem_size,
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
args.split_k_slices);
return sizeof(ElementAccumulator_) * size_t(args.problem_size.m()) * size_t(args.problem_size.n()) * grid_shape.k();
}
/// Initializes GEMM state from arguments.
Status initialize(Arguments const &args, void *workspace) {
// Determine grid shape
ThreadblockSwizzle threadblock_swizzle;
cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape(
args.problem_size,
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
args.split_k_slices);
// Define a reference to the workspace - this is an aligned region in device memory.
if (!workspace) {
return Status::kErrorWorkspaceNull;
}
TensorRef<ElementAccumulator_, layout::RowMajor> ref_workspace(
static_cast<ElementAccumulator_ *>(workspace),
args.problem_size.n());
int64_t partition_stride = int64_t(args.problem_size.m()) * int64_t(args.problem_size.n());
// Initialize the Params structure
gemm_params_ = typename GemmKernel::Params{
args.problem_size,
grid_shape,
args.ref_A.non_const_ref(),
args.ref_B.non_const_ref(),
ref_workspace,
args.convert,
partition_stride
};
reduction_params_ = typename ReductionKernel::Params(
args.problem_size.mn(),
grid_shape.k(),
partition_stride,
ref_workspace,
args.ref_D,
args.ref_C.non_const_ref(),
args.epilogue
);
return Status::kSuccess;
}
/// Lightweight update given a subset of arguments
Status update(Arguments const &args, void *workspace = nullptr) {
if (!workspace) {
return Status::kErrorWorkspaceNull;
}
gemm_params_.ref_A.reset(args.ref_A.data());
gemm_params_.ref_B.reset(args.ref_B.data());
gemm_params_.ref_D.reset(workspace);
reduction_params_.ref_D.reset(args.ref_D.data());
reduction_params_.ref_C.reset(args.ref_C.data());
return Status::kSuccess;
}
/// Runs the kernel using initialized state.
Status run(cudaStream_t stream = nullptr) {
//
// Launch GEMM kernel
//
ThreadblockSwizzle threadblock_swizzle;
dim3 grid = threadblock_swizzle.get_grid_shape(gemm_params_.grid_tiled_shape);
dim3 block(GemmKernel::kThreadCount, 1, 1);
cudaError_t result;
int smem_size = int(sizeof(typename GemmKernel::SharedStorage));
if (smem_size >= (48 << 10)) {
result = cudaFuncSetAttribute(
Kernel<GemmKernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (result != cudaSuccess) {
return Status::kErrorInternal;
}
}
Kernel<GemmKernel><<<grid, block, smem_size, stream>>>(gemm_params_);
result = cudaGetLastError();
if (result != cudaSuccess) {
return Status::kErrorInternal;
}
//
// Launch reduction kernel
//
block = ReductionKernel::block_shape();
grid = ReductionKernel::grid_shape(gemm_params_.problem_size.mn());
Kernel<ReductionKernel><<< grid, block, 0, stream >>>(reduction_params_);
result = cudaGetLastError();
if (result != cudaSuccess) {
return Status::kErrorInternal;
}
return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
}
/// Runs the kernel using initialized state.
Status operator()(cudaStream_t stream = nullptr) {
return run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace);
if (status == Status::kSuccess) {
status = run(stream);
}
return status;
}
};
////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for column-major output
template <
/// Element type for A matrix operand
typename ElementA_,
/// Layout type for A matrix operand
typename LayoutA_,
/// Element type for B matrix operand
typename ElementB_,
/// Layout type for B matrix operand
typename LayoutB_,
/// Element type for C and D matrix operands
typename ElementC_,
/// Element type for internal accumulation
typename ElementAccumulator_,
/// Operator class tag
typename OperatorClass_,
/// Tag indicating architecture to tune for. This is the minimum SM that
/// supports the intended feature. The device kernel can be built
/// targeting any SM larger than this number.
typename ArchTag_,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape_,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape_,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape_,
/// Epilogue output operator
typename EpilogueOutputOp_,
/// Epilogue output operator
typename ConvertScaledOp_,
/// Reduction operator
typename ReductionOp_,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle_,
/// Number of stages used in the pipelined mainloop
int Stages, int kAlignmentA, int kAlignmentB,
/// Operation performed by GEMM
typename Operator_>
class GemmSplitKParallel<ElementA_, LayoutA_, ElementB_, LayoutB_, ElementC_,
layout::ColumnMajor, ElementAccumulator_,
OperatorClass_, ArchTag_, ThreadblockShape_,
WarpShape_, InstructionShape_, EpilogueOutputOp_,
ConvertScaledOp_, ReductionOp_, ThreadblockSwizzle_,
Stages, kAlignmentA, kAlignmentB, Operator_> {
public:
using ElementA = ElementA_;
using LayoutA = LayoutA_;
using ElementB = ElementB_;
using LayoutB = LayoutB_;
using ElementC = ElementC_;
using LayoutC = layout::ColumnMajor;
using ElementAccumulator = ElementAccumulator_;
using OperatorClass = OperatorClass_;
using ArchTag = ArchTag_;
using ThreadblockShape = ThreadblockShape_;
using WarpShape = WarpShape_;
using InstructionShape = InstructionShape_;
using ConvertScaledOp = ConvertScaledOp_;
using EpilogueOutputOp = EpilogueOutputOp_;
using ReductionOp = ReductionOp_;
using ThreadblockSwizzle = ThreadblockSwizzle_;
using Operator = Operator_;
static int const kStages = Stages;
using UnderlyingOperator = GemmSplitKParallel<
ElementB,
typename layout::LayoutTranspose<LayoutB>::type,
ElementA,
typename layout::LayoutTranspose<LayoutA>::type,
ElementC,
layout::RowMajor,
ElementAccumulator,
OperatorClass,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ConvertScaledOp,
ReductionOp,
ThreadblockSwizzle,
Stages,
kAlignmentA,
kAlignmentB,
Operator
>;
using UnderlyingArguments = typename UnderlyingOperator::Arguments;
using GemmKernel = typename UnderlyingOperator::GemmKernel;
using ReductionKernel = typename UnderlyingOperator::ReductionKernel;
/// Argument structure
struct Arguments {
//
// Data members
//
GemmCoord problem_size;
TensorRef<ElementA const, LayoutA> ref_A;
TensorRef<ElementB const, LayoutB> ref_B;
TensorRef<ElementC const, LayoutC> ref_C;
TensorRef<ElementC, LayoutC> ref_D;
typename EpilogueOutputOp::Params epilogue;
int split_k_slices;
typename ConvertScaledOp::Params convert;
typename ReductionOp::Params reduction;
//
// Methods
//
/// Default ctor
CUTLASS_HOST_DEVICE
Arguments() { }
/// Constructs an Arguments structure
CUTLASS_HOST_DEVICE
Arguments(
GemmCoord problem_size_,
TensorRef<ElementA const, LayoutA> ref_A_,
TensorRef<ElementB const, LayoutB> ref_B_,
TensorRef<ElementC const, LayoutC> ref_C_,
TensorRef<ElementC, LayoutC> ref_D_,
typename EpilogueOutputOp::Params epilogue_ =
typename EpilogueOutputOp::Params(),
int split_k_slices = 1,
typename ConvertScaledOp::Params convert_ =
typename ConvertScaledOp::Params(),
typename ReductionOp::Params reduction_ =
typename ReductionOp::Params()
):
problem_size(problem_size_),
ref_A(ref_A_),
ref_B(ref_B_),
ref_C(ref_C_),
ref_D(ref_D_),
epilogue(epilogue_),
split_k_slices(split_k_slices),
convert(convert_),
reduction(reduction_) { }
};
private:
/// Kernel parameters object
UnderlyingOperator underlying_operator_;
public:
/// Constructs the GEMM.
GemmSplitKParallel() { }
/// Helper to construct a transposed equivalent for the underying GEMM operator
static UnderlyingArguments to_underlying_arguments(Arguments const &args) {
return UnderlyingArguments(
{args.problem_size.n(), args.problem_size.m(), args.problem_size.k()},
{args.ref_B.data(), args.ref_B.stride(0)},
{args.ref_A.data(), args.ref_A.stride(0)},
{args.ref_C.data(), args.ref_C.stride(0)},
{args.ref_D.data(), args.ref_D.stride(0)},
args.epilogue,
args.split_k_slices,
args.convert,
args.reduction
);
}
/// Determines whether the GEMM can execute the given problem.
static Status can_implement(Arguments const &args) {
return UnderlyingOperator::can_implement(to_underlying_arguments(args));
}
/// Gets the workspace size
static size_t get_workspace_size(Arguments const &args) {
return UnderlyingOperator::get_workspace_size(to_underlying_arguments(args));
}
/// Initializes GEMM state from arguments.
Status initialize(Arguments const &args, void *workspace) {
return underlying_operator_.initialize(to_underlying_arguments(args), workspace);
}
/// Lightweight update given a subset of arguments
Status update(Arguments const &args, void *workspace = nullptr) {
return underlying_operator_.update(to_underlying_arguments(args), workspace);
}
/// Runs the kernel using initialized state.
Status run(cudaStream_t stream = nullptr) {
return underlying_operator_.run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(cudaStream_t stream = nullptr) {
return run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace, stream);
if (status == Status::kSuccess) {
status = run(stream);
}
return status;
}
};
////////////////////////////////////////////////////////////////////////////////
} // namespace device
} // namespace gemm
} // namespace cutlass
////////////////////////////////////////////////////////////////////////////////