-
Notifications
You must be signed in to change notification settings - Fork 0
/
script.py
545 lines (458 loc) · 18.1 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import json
import os
import shutil
from dataclasses import dataclass, field
from typing import Optional, Set
from tqdm import tqdm
from transformers import (
AutoConfig,
AutoTokenizer,
HfArgumentParser
)
import onnx
from optimum.exporters.onnx import main_export, export_models
from optimum.exporters.tasks import TasksManager
from onnxruntime.quantization import (
quantize_dynamic,
QuantType
)
DEFAULT_QUANTIZE_PARAMS = {
'per_channel': True,
'reduce_range': True,
}
MODEL_SPECIFIC_QUANTIZE_PARAMS = {
# Decoder-only models
'codegen': {
'per_channel': False,
'reduce_range': False,
},
'gpt2': {
'per_channel': False,
'reduce_range': False,
},
'gpt_bigcode': {
'per_channel': False,
'reduce_range': False,
},
'gptj': {
'per_channel': False,
'reduce_range': False,
},
'gpt-neo': {
'per_channel': False,
'reduce_range': False,
},
'gpt-neox': {
'per_channel': False,
'reduce_range': False,
},
'mpt': {
'per_channel': False,
'reduce_range': False,
},
'bloom': {
'per_channel': False,
'reduce_range': False,
},
'llama': {
'per_channel': False,
'reduce_range': False,
},
'opt': {
'per_channel': False,
'reduce_range': False,
},
'mistral': {
'per_channel': False,
'reduce_range': False,
},
'falcon': {
'per_channel': False,
'reduce_range': False,
},
'phi': {
'per_channel': False,
'reduce_range': False,
},
'qwen2': {
'per_channel': False,
'reduce_range': False,
},
'stablelm': {
'per_channel': False,
'reduce_range': False,
},
'starcoder2': {
'per_channel': False,
'reduce_range': False,
},
# Encoder-decoder models
'whisper': {
'per_channel': False,
'reduce_range': False,
},
'vision-encoder-decoder': {
'per_channel': False,
'reduce_range': False,
},
# Encoder-only models
'owlv2': {
'per_channel': False,
'reduce_range': False,
},
'wavlm': {
'per_channel': False,
'reduce_range': False,
},
'wav2vec2': {
'per_channel': False,
'reduce_range': False,
},
'unispeech': {
'per_channel': False,
'reduce_range': False,
},
'unispeech-sat': {
'per_channel': False,
'reduce_range': False,
},
}
MODELS_WITHOUT_TOKENIZERS = [
'wav2vec2',
'wav2vec2-bert',
'wavlm',
'hubert',
'unispeech',
'unispeech-sat',
]
@dataclass
class ConversionArguments:
"""
Arguments used for converting HuggingFace models to onnx.
"""
model_id: str = field(
metadata={
"help": "Model identifier"
}
)
tokenizer_id: str = field(
default=None,
metadata={
"help": "Tokenizer identifier (if different to `model_id`)"
}
)
quantize: bool = field(
default=False,
metadata={
"help": "Whether to quantize the model."
}
)
output_parent_dir: str = field(
default='./models/',
metadata={
"help": "Path where the converted model will be saved to."
}
)
task: Optional[str] = field(
default='auto',
metadata={
"help": (
"The task to export the model for. If not specified, the task will be auto-inferred based on the model. Available tasks depend on the model, but are among:"
f" {str(TasksManager.get_all_tasks())}. For decoder models, use `xxx-with-past` to export the model using past key values in the decoder."
)
}
)
opset: int = field(
default=None,
metadata={
"help": (
"If specified, ONNX opset version to export the model with. Otherwise, the default opset will be used."
)
}
)
device: str = field(
default='cpu',
metadata={
"help": 'The device to use to do the export.'
}
)
skip_validation: bool = field(
default=False,
metadata={
"help": "Whether to skip validation of the converted model"
}
)
per_channel: bool = field(
default=None,
metadata={
"help": "Whether to quantize weights per channel"
}
)
reduce_range: bool = field(
default=None,
metadata={
"help": "Whether to quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine, especially for per-channel mode"
}
)
output_attentions: bool = field(
default=False,
metadata={
"help": "Whether to output attentions from the model. NOTE: This is only supported for whisper models right now."
}
)
split_modalities: bool = field(
default=False,
metadata={
"help": "Whether to split multimodal models. NOTE: This is only supported for CLIP models right now."
}
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": "Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories"
"you trust and in which you have read the code, as it will execute on your local machine arbitrary code present in the model repository."
}
)
custom_onnx_configs: str = field(
default=None,
metadata={
"help": "Experimental usage: override the default ONNX config used for the given model. This argument may be useful for advanced users "
"that desire a finer-grained control on the export."
}
)
def get_operators(model: onnx.ModelProto) -> Set[str]:
operators = set()
def traverse_graph(graph):
for node in graph.node:
operators.add(node.op_type)
for attr in node.attribute:
if attr.type == onnx.AttributeProto.GRAPH:
subgraph = attr.g
traverse_graph(subgraph)
traverse_graph(model.graph)
return operators
def quantize(model_names_or_paths, **quantize_kwargs):
"""
Quantize the weights of the model from float32 to int8 to allow very efficient inference on modern CPU
Uses unsigned ints for activation values, signed ints for weights, per
https://onnxruntime.ai/docs/performance/quantization.html#data-type-selection
it is faster on most CPU architectures
Args:
onnx_model_path: Path to location the exported ONNX model is stored
Returns: The Path generated for the quantized
"""
quantize_config = dict(
**quantize_kwargs,
per_model_config={}
)
for model in tqdm(model_names_or_paths, desc='Quantizing'):
directory_path = os.path.dirname(model)
file_name_without_extension = os.path.splitext(
os.path.basename(model))[0]
# NOTE:
# As of 2023/04/20, the current latest version of onnxruntime-web is 1.14.0, and does not support INT8 weights for Conv layers.
# For this reason, we choose model weight types to ensure compatibility with onnxruntime-web.
#
# As per docs, signed weight type (QInt8) is faster on most CPUs, so, we use that unless the model contains a Conv layer.
# For more information, see:
# - https://github.com/microsoft/onnxruntime/issues/3130#issuecomment-1105200621
# - https://github.com/microsoft/onnxruntime/issues/2339
loaded_model = onnx.load_model(model)
op_types = get_operators(loaded_model)
weight_type = QuantType.QUInt8 if 'Conv' in op_types else QuantType.QInt8
quantize_dynamic(
model_input=model,
model_output=os.path.join(
directory_path, f'{file_name_without_extension}_quantized.onnx'),
weight_type=weight_type,
optimize_model=False,
# TODO allow user to specify these
# op_types_to_quantize=['MatMul', 'Add', 'Conv'],
extra_options=dict(
EnableSubgraph=True
),
**quantize_kwargs
)
quantize_config['per_model_config'][file_name_without_extension] = dict(
op_types=list(op_types),
weight_type=str(weight_type),
)
# Save quantization config
with open(os.path.join(directory_path, 'quantize_config.json'), 'w') as fp:
json.dump(quantize_config, fp, indent=4)
def main():
parser = HfArgumentParser(
(ConversionArguments, )
)
conv_args, = parser.parse_args_into_dataclasses()
model_id = conv_args.model_id
tokenizer_id = conv_args.tokenizer_id or model_id
output_model_folder = os.path.join(conv_args.output_parent_dir, model_id)
# Create output folder
os.makedirs(output_model_folder, exist_ok=True)
from_pretrained_kwargs = dict(
trust_remote_code=conv_args.trust_remote_code,
)
# Saving the model config
config = AutoConfig.from_pretrained(model_id, **from_pretrained_kwargs)
custom_kwargs={}
if conv_args.custom_onnx_configs is not None:
if conv_args.task == 'auto':
raise Exception('`--task` must be set when exporting with `--custom_onnx_configs`')
custom_onnx_configs = json.loads(conv_args.custom_onnx_configs)
for key in custom_onnx_configs:
onnx_configs = TasksManager._SUPPORTED_MODEL_TYPE[custom_onnx_configs[key]]['onnx']
mapping = onnx_configs[conv_args.task]
custom_onnx_configs[key] = mapping.func(config, **mapping.keywords)
custom_kwargs['custom_onnx_configs'] = custom_onnx_configs
tokenizer = None
try:
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, **from_pretrained_kwargs)
# To avoid inserting all chat templates into tokenizers.js, we save the chat template
# to the tokenizer_config.json file, and load it when the tokenizer is loaded.
if getattr(tokenizer, 'chat_template', None) is None and \
getattr(tokenizer, 'use_default_system_prompt', False):
# No chat template specified, and we use the default
setattr(tokenizer, 'chat_template', tokenizer.default_chat_template)
except KeyError:
pass # No Tokenizer
except Exception as e:
if config.model_type not in MODELS_WITHOUT_TOKENIZERS:
raise e
core_export_kwargs = dict(
opset=conv_args.opset,
device=conv_args.device,
trust_remote_code=conv_args.trust_remote_code,
**custom_kwargs,
)
export_kwargs = dict(
model_name_or_path=model_id,
output=output_model_folder,
task=conv_args.task,
do_validation=not conv_args.skip_validation,
library_name='transformers',
**core_export_kwargs,
)
# Handle special cases
if config.model_type == 'marian':
from .extra.marian import generate_tokenizer_json
tokenizer_json = generate_tokenizer_json(model_id, tokenizer)
with open(os.path.join(output_model_folder, 'tokenizer.json'), 'w', encoding='utf-8') as fp:
json.dump(tokenizer_json, fp, indent=4)
elif config.model_type == 'esm':
from .extra.esm import generate_fast_tokenizer
fast_tokenizer = generate_fast_tokenizer(tokenizer)
fast_tokenizer.save(os.path.join(output_model_folder, 'tokenizer.json'))
elif config.model_type == 'whisper':
if conv_args.output_attentions:
from .extra.whisper import get_main_export_kwargs
export_kwargs.update(
**get_main_export_kwargs(config, "automatic-speech-recognition")
)
elif config.model_type in ('wav2vec2', 'wav2vec2-bert', 'hubert', 'unispeech' , 'unispeech-sat'):
if tokenizer is not None:
from .extra.wav2vec2 import generate_tokenizer_json
tokenizer_json = generate_tokenizer_json(tokenizer)
with open(os.path.join(output_model_folder, 'tokenizer.json'), 'w', encoding='utf-8') as fp:
json.dump(tokenizer_json, fp, indent=4)
elif config.model_type == 'vits':
if tokenizer is not None:
from .extra.vits import generate_tokenizer_json
tokenizer_json = generate_tokenizer_json(tokenizer)
with open(os.path.join(output_model_folder, 'tokenizer.json'), 'w', encoding='utf-8') as fp:
json.dump(tokenizer_json, fp, indent=4)
elif config.model_type == 'speecht5':
# TODO allow user to specify vocoder path
export_kwargs["model_kwargs"] = {"vocoder": "microsoft/speecht5_hifigan"}
if tokenizer is not None:
from .extra.speecht5 import generate_tokenizer_json
tokenizer_json = generate_tokenizer_json(tokenizer)
with open(os.path.join(output_model_folder, 'tokenizer.json'), 'w', encoding='utf-8') as fp:
json.dump(tokenizer_json, fp, indent=4)
elif config.model_type in ('owlvit', 'owlv2'):
# Override default batch size to 1, needed because non-maximum suppression is performed for exporting.
# For more information, see https://github.com/huggingface/optimum/blob/e3b7efb1257c011db907ef40ab340e795cc5684c/optimum/exporters/onnx/model_configs.py#L1028-L1032
export_kwargs['batch_size'] = 1
else:
pass # TODO
# Step 1. convert huggingface model to onnx
if not conv_args.split_modalities:
main_export(**export_kwargs)
else:
custom_export_kwargs = dict(
output_dir=output_model_folder,
**core_export_kwargs,
)
if config.model_type == 'clip':
# Handle special case for exporting text and vision models separately
from .extra.clip import CLIPTextModelWithProjectionOnnxConfig, CLIPVisionModelWithProjectionOnnxConfig
from transformers.models.clip import CLIPTextModelWithProjection, CLIPVisionModelWithProjection
text_model = CLIPTextModelWithProjection.from_pretrained(model_id, **from_pretrained_kwargs)
vision_model = CLIPVisionModelWithProjection.from_pretrained(model_id, **from_pretrained_kwargs)
export_models(
models_and_onnx_configs={
"text_model": (text_model, CLIPTextModelWithProjectionOnnxConfig(text_model.config)),
"vision_model": (vision_model, CLIPVisionModelWithProjectionOnnxConfig(vision_model.config)),
},
**custom_export_kwargs,
)
elif config.model_type == 'siglip':
# Handle special case for exporting text and vision models separately
from .extra.siglip import SiglipTextModelOnnxConfig, SiglipVisionModelOnnxConfig
from transformers.models.siglip import SiglipTextModel, SiglipVisionModel
text_model = SiglipTextModel.from_pretrained(model_id, **from_pretrained_kwargs)
vision_model = SiglipVisionModel.from_pretrained(model_id, **from_pretrained_kwargs)
export_models(
models_and_onnx_configs={
"text_model": (text_model, SiglipTextModelOnnxConfig(text_model.config)),
"vision_model": (vision_model, SiglipVisionModelOnnxConfig(vision_model.config)),
},
**custom_export_kwargs,
)
# TODO: Enable once https://github.com/huggingface/optimum/pull/1552 is merged
# elif config.model_type == 'clap':
# # Handle special case for exporting text and audio models separately
# from .extra.clap import ClapTextModelWithProjectionOnnxConfig, ClapAudioModelWithProjectionOnnxConfig
# from transformers.models.clap import ClapTextModelWithProjection, ClapAudioModelWithProjection
# text_model = ClapTextModelWithProjection.from_pretrained(model_id, **from_pretrained_kwargs)
# audio_model = ClapAudioModelWithProjection.from_pretrained(model_id, **from_pretrained_kwargs)
# export_models(
# models_and_onnx_configs={
# "text_model": (text_model, ClapTextModelWithProjectionOnnxConfig(text_model.config)),
# "audio_model": (audio_model, ClapAudioModelWithProjectionOnnxConfig(audio_model.config)),
# },
# **custom_export_kwargs,
# )
else:
raise Exception(f'Unable to export {config.model_type} model with `--split_modalities`.')
# Step 2. (optional, recommended) quantize the converted model for fast inference and to reduce model size.
if conv_args.quantize:
# Update quantize config with model specific defaults
quantize_config = MODEL_SPECIFIC_QUANTIZE_PARAMS.get(
config.model_type, DEFAULT_QUANTIZE_PARAMS)
# Update if user specified values
if conv_args.per_channel is not None:
quantize_config['per_channel'] = conv_args.per_channel
if conv_args.reduce_range is not None:
quantize_config['reduce_range'] = conv_args.reduce_range
quantize([
os.path.join(output_model_folder, x)
for x in os.listdir(output_model_folder)
if x.endswith('.onnx') and not x.endswith('_quantized.onnx')
], **quantize_config)
# Step 3. Move .onnx files to the 'onnx' subfolder
os.makedirs(os.path.join(output_model_folder, 'onnx'), exist_ok=True)
for file in os.listdir(output_model_folder):
if file.endswith(('.onnx', '.onnx_data')):
shutil.move(os.path.join(output_model_folder, file),
os.path.join(output_model_folder, 'onnx', file))
# Step 4. Update the generation config if necessary
if config.model_type == 'whisper':
from transformers import GenerationConfig
from .extra.whisper import get_alignment_heads
generation_config = GenerationConfig.from_pretrained(model_id, **from_pretrained_kwargs)
generation_config.alignment_heads = get_alignment_heads(config)
generation_config.save_pretrained(output_model_folder)
if __name__ == '__main__':
main()