forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
topology.tex
3511 lines (3006 loc) · 125 KB
/
topology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Topology}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
Basic topology will be explained in this document.
A reference is \cite{Engelking}.
\section{Basic notions}
\label{section-topology-basic}
\noindent
The following notions are considered basic and will not be defined,
and or proved. This does not mean they are all necessarily easy or
well known.
\begin{enumerate}
\item
\label{item-space}
$X$ is a {\it topological space},
\item
\label{item-point}
$x\in X$ is a {\it point},
\item
\label{item-closed-point}
$x\in X$ is a {\it closed point},
\item
\label{item-dense}
$E \subset X$ is a {\it dense} set,
\item
\label{item-continuous}
$f : X_1 \to X_2$ is {\it continuous},
\item a continuous map of spaces $f : X \to Y$ is
{\it open} if $f(U)$ is open in $Y$ for $U \subset X$ open,
\item a continuous map of spaces $f : X \to Y$ is
{\it closed} if $f(Z)$ is closed in $Y$ for $Z \subset X$ closed,
\item
\label{item-neighbourhood}
a {\it neighbourhood of $x \in X$} is any subset
$E \subset X$ which contains an open subset that
contains $x$,
\item
\label{item-covering}
$\mathcal{U} : U = \bigcup_{i \in I} U_i$ is an
{\it open covering of} $U$ (note: we allow any $U_i$ to be empty
and we even allow, in case $U$ is empty, the empty set for $I$),
\item
\label{item-refinement}
the open covering $\mathcal{V}$ is a {\it refinement}
of the open covering $\mathcal{U}$ (if
$\mathcal{V} : V = \bigcup_{j \in J} V_j$ and
$\mathcal{U} : U = \bigcup_{i \in I} U_i$
this means each $V_j$ is completely contained in one of the $U_i$),
\item
\label{item-fundamental-system}
{\it $\{ E_i \}_{i \in I}$ is a fundamental system of neighbourhoods
of $x$ in $X$},
\item
\label{item-Hausdorff}
a topological space $X$ is called {\it Hausdorff} or {\it separated}
if and only if for every distinct pair of points $x, y \in X$ there exist
disjoint opens $U, V \subset X$ such that $x \in U$, $y \in V$,
\item the {\it product} of two topological spaces,
\label{item-product}
\item
\label{item-fibre-product}
the {\it fibre product $X \times_Y Z$} of a pair of continuous maps
$f : X \to Y$ and $g : Z \to Y$,
\item etc.
\end{enumerate}
\section{Hausdorff spaces}
\label{section-Hausdorff}
\noindent
The category of topological spaces has finite products.
\begin{lemma}
\label{lemma-Hausdorff}
Let $X$ be a topological space. The following are equivalent
\begin{enumerate}
\item $X$ is Hausdorff,
\item the diagonal $\Delta(X) \subset X \times X$ is closed.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-graph-closed}
Let $f : X \to Y$ be a continuous map of topological spaces.
If $Y$ is Hausdorff, then the graph of $f$ is closed in $X \times Y$.
\end{lemma}
\begin{proof}
The graph is the inverse image of the diagonal under the map
$X \times Y \to Y \times Y$. Thus the lemma follows from
Lemma \ref{lemma-Hausdorff}.
\end{proof}
\begin{lemma}
\label{lemma-section-closed}
Let $f : X \to Y$ be a continuous map of topological spaces.
Let $s : Y \to X$ be a continuous map such that $f \circ s = \text{id}_Y$.
If $X$ is Hausdorff, then $s(Y)$ is closed.
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-Hausdorff} as
$s(Y) = \{x \in X \mid x = s(f(x))\}$.
\end{proof}
\begin{lemma}
\label{lemma-fibre-product-closed}
Let $X \to Z$ and $Y \to Z$ be continuous maps of topological spaces.
If $Z$ is Hausdorff, then $X \times_Z Y$ is closed in $X \times Y$.
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-Hausdorff} as
$X \times_Z Y$ is the inverse image of $\Delta(Z)$
under $X \times Y \to Z \times Z$.
\end{proof}
\section{Bases}
\label{section-bases}
\noindent
Basic material on bases for topological spaces.
\begin{definition}
\label{definition-base}
Let $X$ be a topological space. A collection of subsets $\mathcal{B}$ of $X$
is called a {\it base for the topology on $X$} or a {\it basis for the
topology on $X$} if the following conditions hold:
\begin{enumerate}
\item Every element $B \in \mathcal{B}$ is open in $X$.
\item For every open $U \subset X$ and every $x \in U$,
there exists an element $B \in \mathcal{B}$ such that
$x \in B \subset U$.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-refine-covering-basis}
Let $X$ be a topological space.
Let $\mathcal{B}$ be a basis for the topology on $X$.
Let $\mathcal{U} : U = \bigcup_i U_i$ be an open covering of
$U \subset X$. There exists an open covering $U = \bigcup V_j$
which is a refinement of $\mathcal{U}$ such that each
$V_j$ is an element of the basis $\mathcal{B}$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}
\label{definition-subbase}
Let $X$ be a topological space. A collection of subsets $\mathcal{B}$ of $X$
is called a {\it subbase for the topology on $X$} or a {\it subbasis for the
topology on $X$} if the finite intersections of
elements of $\mathcal{B}$ forms a basis for the topology on $X$.
\end{definition}
\noindent
In particular every element of $\mathcal{B}$ is open.
\begin{lemma}
\label{lemma-subbase}
Let $X$ be a set. Given any collection $\mathcal{B}$ of subsets of $X$
there is a unique topology on $X$ such that $\mathcal{B}$ is a subbase
for this topology.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Submersive maps}
\label{section-submersive}
\noindent
Here is the definition.
\begin{definition}
\label{definition-submersive}
Let $f : X \to Y$ be a continuous map of topological spaces.
We say $f$ is {\it submersive}\footnote{This is very different from
the notion of a submersion between differential manifolds!}
if $f$ is surjective and for any $T \subset Y$ we have $T$ is
open or closed if and only if $f^{-1}(T)$ is so.
\end{definition}
\noindent
We also express this by saying $Y$ has the
{\it quotient topology} relative to the map $X \to Y$.
\begin{lemma}
\label{lemma-quotient}
Let $X$ be a topological space. Let $Y$ be a set and let $f : X \to Y$
be a surjective map of sets. There is a unique topology on $Y$ such
that $f$ is continuous and submersive.
\end{lemma}
\begin{proof}
The collection of subsets $V \subset Y$ such that $f^{-1}V$
is open in $X$ defines a topology on $Y$.
\end{proof}
\begin{lemma}
\label{lemma-open-morphism-quotient-topology}
Let $f : X \to Y$ be surjective, open, continuous map of topological spaces.
Let $T \subset Y$ be a subset. Then
\begin{enumerate}
\item $f^{-1}(\overline{T}) = \overline{f^{-1}(T)}$,
\item $T \subset Y$ is closed if and only $f^{-1}(T)$ is closed,
\item $T \subset Y$ is open if and only $f^{-1}(T)$ is open, and
\item $T \subset Y$ is locally closed if and only $f^{-1}(T)$ is locally closed.
\end{enumerate}
In particular we see that $f$ is submersive.
\end{lemma}
\begin{proof}
It is clear that $\overline{f^{-1}(T)} \subset f^{-1}(\overline{T})$.
If $x \in X$, and $x \not \in \overline{f^{-1}(T)}$, then there
exists an open neighbourhood $x \in U \subset X$ with
$U \cap f^{-1}(T) = \emptyset$. Since $f$ is open we see that
$f(U)$ is an open neighbourhood of $f(x)$ not meeting $T$.
Hence $x \not \in f^{-1}(\overline{T})$. This proves (1).
Part (2) is an easy consequences of this.
Part (3) is obvious from the fact that $f$ is open.
For (4), if $f^{-1}(T)$
is locally closed, then
$f^{-1}(T) \subset \overline{f^{-1}(T)} = f^{-1}(\overline{T})$
is open, and hence by (3) applied to the map
$f^{-1}(\overline{T}) \to \overline{T}$ we see that
$T$ is open in $\overline{T}$, i.e., $T$ is locally closed.
\end{proof}
\section{Connected components}
\label{section-connected-components}
\begin{definition}
\label{definition-connected-components}
Let $X$ be a topological space.
\begin{enumerate}
\item We say $X$ is {\it connected} if $X$ is not empty and whenever
$X = T_1 \coprod T_2$ with $T_i \subset X$ open and closed, then either
$T_1 = \emptyset$ or $T_2 = \emptyset$.
\item We say $T \subset X$ is a {\it connected component} of $X$ if
$T$ is a maximal connected subset of $X$.
\end{enumerate}
\end{definition}
\noindent
The empty space is not connected.
\begin{lemma}
\label{lemma-image-connected-space}
Let $f : X \to Y$ be a continuous map of topological spaces.
If $E \subset X$ is a connected subset, then $f(E) \subset Y$
is connected as well.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-connected-components}
Let $X$ be a topological space. If $T \subset X$ is connected,
then so is its closure. Each point of $X$ is contained
in a connected component. Connected components are always closed,
but not necessarily open.
\end{lemma}
\begin{proof}
Let $\overline{T}$ be the closure of the connected subset $T$.
Suppose $\overline{T} = T_1 \coprod T_2$ with $T_i \subset \overline{T}$
open and closed. Then $T = (T\cap T_1) \coprod (T \cap T_2)$. Hence
$T$ equals one of the two, say $T = T_1 \cap T$. Thus clearly
$\overline{T} \subset T_1$ as desired.
\medskip\noindent
Pick a point $x\in X$. Consider the set $A$ of connected subsets
$x \in T_\alpha \subset X$. Note that $A$ is nonempty since
$\{x\} \in A$. There is a partial ordering on $A$ coming from
inclusion: $\alpha \leq \alpha' \Leftrightarrow T_\alpha \subset T_{\alpha'}$.
Choose a maximal totally ordered subset $A' \subset A$, and let
$T = \bigcup_{\alpha \in A'} T_\alpha$. We claim that $T$ is
connected. Namely, suppose that $T = T_1 \coprod T_2$ is a disjoint
union of two open and closed subsets of $T$.
For each $\alpha \in A'$ we have either $T_\alpha \subset T_1$
or $T_\alpha \subset T_2$, by connectedness of $T_\alpha$.
Suppose that for some $\alpha_0 \in A'$ we have
$T_{\alpha_0} \not\subset T_1$ (say, if not we're done anyway).
Then, since $A'$ is totally ordered we see immediately that
$T_\alpha \subset T_2$ for all $\alpha \in A'$. Hence $T = T_2$.
\medskip\noindent
To get an example
where connected components are not open, just take
an infinite product $\prod_{n \in \mathbf{N}} \{0, 1\}$
with the product topology. This is a totally disconnected
space so connected components are singletons, which are
not open.
\end{proof}
\begin{lemma}
\label{lemma-connected-fibres-quotient-topology-connected-components}
Let $f : X \to Y$ be a continuous map of topological spaces.
Assume that
\begin{enumerate}
\item all fibres of $f$ are connected, and
\item a set $T \subset Y$ is closed if and only if $f^{-1}(T)$ is closed.
\end{enumerate}
Then $f$ induces a bijection between the sets of connected
components of $X$ and $Y$.
\end{lemma}
\begin{proof}
Let $T \subset Y$ be a connected component.
Note that $T$ is closed, see Lemma \ref{lemma-connected-components}.
The lemma follows if we show that $p^{-1}(T)$ is connected
because any connected subset of $X$ maps into a connected component
of $Y$ by Lemma \ref{lemma-image-connected-space}.
Suppose that $p^{-1}(T) = Z_1 \coprod Z_2$
with $Z_1$, $Z_2$ closed. For any $t \in T$ we see that
$p^{-1}(\{t\}) = Z_1 \cap p^{-1}(\{t\}) \coprod Z_2 \cap p^{-1}(\{t\})$.
By (1) we see $p^{-1}(\{t\})$ is connected we conclude that
either $p^{-1}(\{t\}) \subset Z_1$ or $p^{-1}(\{t\}) \subset Z_2$.
In other words $T = T_1 \coprod T_2$ with $p^{-1}(T_i) = Z_i$.
By (2) we conclude that $T_i$ is closed in $Y$.
Hence either $T_1 = \emptyset$ or $T_2 = \emptyset$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-connected-fibres-connected-components}
Let $f : X \to Y$ be a continuous map of topological spaces.
Assume that
(a) $f$ is open,
(b) all fibres of $f$ are connected.
Then $f$ induces a bijection between the sets of connected
components of $X$ and $Y$.
\end{lemma}
\begin{proof}
This is a special case of
Lemma \ref{lemma-connected-fibres-quotient-topology-connected-components}.
\end{proof}
\begin{lemma}
\label{lemma-finite-fibre-connected-components}
Let $f : X \to Y$ be a continuous map of nonempty topological spaces. Assume
that
(a) $Y$ is connected,
(b) $f$ is open and closed, and
(c) there is a point $y\in Y$ such that the fiber $f^{-1}(y)$ is a finite set.
Then $X$ has at most $|f^{-1}(y)|$ connected components. Hence any connected
component $T$ of $X$ is open and closed, and $p(T)$ is a nonempty open and
closed subset of $Y$, which is therefore equal to $Y$.
\end{lemma}
\begin{proof}
If the topological space $X$ has at least $N$ connected components for some
$N\in \mathbb{N}$, we find by induction a decomposition
$X=X_1\amalg\dots\amalg X_N$ of $X$ as a disjoint union of $N$ nonempty open
and closed subsets $X_1,\dots,X_N$ of $X$. As $f$ is open and closed, each
$f(X_i)$ is a nonempty open and closed subset of $Y$ and is hence equal to
$Y$. In particular the intersection $X_i\cap p^{-1}(y)$ is nonempty for each
$1\leq i\leq N$. Hence $p^{-1}(y)$ has at least $N$ elements.
\end{proof}
\begin{definition}
\label{definition-totally-disconnected}
A topological space is {\it totally disconnected} if the connected components
are all singletons.
\end{definition}
\noindent
A discrete space is totally disconnected.
A totally disconnected space need not be discrete, for example
$\mathbf{Q} \subset \mathbf{R}$ is totally disconnected but not discrete.
\begin{lemma}
\label{lemma-space-connected-components}
Let $X$ be a topological space. Let $\pi_0(X)$ be the set of connected
components of $X$. Let $X \to \pi_0(X)$ be the map which sends
$x \in X$ to the connected component of $X$ passing through $x$.
Endow $\pi_0(X)$ with the quotient topology. Then $\pi_0(X)$ is a
totally disconnected space and any continuous map $X \to Y$
from $X$ to a totally disconnected space $Y$ factors through $\pi_0(X)$.
\end{lemma}
\begin{proof}
By Lemma
\ref{lemma-connected-fibres-quotient-topology-connected-components}
the connected components of $\pi_0(X)$ are the singletons.
We omit the proof of the second statement.
\end{proof}
\begin{definition}
\label{definition-locally-connected}
A topological space $X$ is called {\it locally connected} if
every point $x \in X$ has a fundamental system of connected neighbourhoods.
\end{definition}
\begin{lemma}
\label{lemma-locally-connected}
Let $X$ be a topological space. If $X$ is locally connected, then
\begin{enumerate}
\item any open subset of $X$ is locally connected, and
\item the connected components of $X$ are open.
\end{enumerate}
So also the connected components of open subsets of $X$ are open.
In particular, every point has a fundamental system of open connected
neighbourhoods.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Irreducible components}
\label{section-irreducible-components}
\begin{definition}
\label{definition-irreducible-components}
Let $X$ be a topological space.
\begin{enumerate}
\item We say $X$ is {\it irreducible}, if $X$ is not empty, and whenever
$X = Z_1 \cup Z_2$ with $Z_i$ closed, we have $X = Z_1$ or $X = Z_2$.
\item We say $Z \subset X$ is an {\it irreducible component} of $X$
if $Z$ is a maximal irreducible subset of $X$.
\end{enumerate}
\end{definition}
\noindent
An irreducible space is obviously connected.
\begin{lemma}
\label{lemma-image-irreducible-space}
Let $f : X \to Y$ be a continuous map of topological spaces.
If $E \subset X$ is an irreducible subset, then $f(E) \subset Y$
is irreducible as well.
\end{lemma}
\begin{proof}
Suppose $f(E)$ is the union of $Z_1 \cap f(E)$ and $Z_2 \cap f(E)$, for two
distinct closed subsets $Z_1$ and $Z_2$ of $Y$; this is equal to the
intersection $(Z_1 \cup Z_2) \cap f(E)$, so $f(E)$ is then contained in the
union $Z_1 \cup Z_2$. For the irreducibility of $f(E)$ it suffices to show
that it is contained in either $Z_1$ or $Z_2$. The relation
$f(E) \subseteq Z_1 \cup Z_2$ shows that
$f^{-1}(f(E)) \subseteq f^{-1}(Z_1 \cup Z_2)$; as the right-hand side is
clearly equal to $f^{-1}(Z_1) \cup f^{-1}(Z_2)$ and since
$E \subseteq f^{-1}(f(E))$, it follows that
$E \subseteq f^{-1}(Z_1) \cup f^{-1}(Z_2)$, from which one concludes by the
irreducibility of $E$ that $E \subseteq f^{-1}(Z_1)$ or
$E \subseteq f^{-1}(Z_2)$. Hence one sees that either
$f(E) \subseteq f(f^{-1}(Z_1)) \subseteq Z_1$ or $f(E) \subseteq Z_2$.
\end{proof}
\begin{lemma}
\label{lemma-irreducible}
Let $X$ be a topological space. If $T \subset X$ is irreducible
so is its closure in $X$. Any irreducible component of $X$ is
closed. Every point of $X$ is contained in some irreducible component
of $X$.
\end{lemma}
\begin{proof}
Let $\overline{T}$ be the closure of the irreducible subset $T$.
If $\overline{T} = Z_1 \cup Z_2$ with $Z_i \subset \overline{T}$
closed, then $T = (T\cap Z_1) \cup (T \cap Z_2)$ and hence
$T$ equals one of the two, say $T = Z_1 \cap T$. Thus clearly
$\overline{T} \subset Z_1$ as desired.
\medskip\noindent
Pick a point $x\in X$. Consider the set $A$ of irreducible subsets
$x \in T_\alpha \subset X$. Note that $A$ is nonempty since
$\{x\} \in A$. There is a partial ordening on $A$ coming from
inclusion: $\alpha \leq \alpha' \Leftrightarrow T_\alpha \subset T_{\alpha'}$.
Choose a maximal totally ordered subset $A' \subset A$, and let
$T = \bigcup_{\alpha \in A'} T_\alpha$. We claim that $T$ is
irreducible. Namely, suppose that $T = Z_1 \cup Z_2$ is a union
of two closed subsets of $T$. For each $\alpha \in A'$ we have
either $T_\alpha \subset Z_1$ or $T_\alpha \subset Z_2$, by irreducibility
of $T_\alpha$. Suppose that for some $\alpha_0 \in A'$ we have
$T_{\alpha_0} \not\subset Z_1$ (say, if not we're done anyway).
Then, since $A'$ is totally ordered we see immediately that
$T_\alpha \subset Z_2$ for all $\alpha \in A'$. Hence $T = Z_2$.
\end{proof}
\noindent
A singleton is irreducible. Thus if $x \in X$ is a point
then the closure $\overline{\{x\}}$ is an irreducible closed
subset of $X$.
\begin{definition}
\label{definition-generic-point}
Let $X$ be a topological space.
\begin{enumerate}
\item Let $Z \subset X$ be an irreducible closed subset.
A {\it generic point} of $Z$ is a point $\xi \in Z$ such
that $Z = \overline{\{\xi\}}$.
\item The space $X$ is called {\it Kolmogorov}, if for every $x, x' \in X$,
$x \not = x'$ there exists a closed subset of $X$ which contains
exactly one of the two points.
\item The space $X$ is called {\it sober} if every
irreducible closed subset has a unique generic point.
\end{enumerate}
\end{definition}
\noindent
A space $X$ is Kolmogorov if for $x_1, x_2 \in X$ we have $x_1 = x_2$
if and only if $\overline{\{x_1\}} = \overline{\{x_2\}}$. Hence we see
that a sober topological space is Kolmogorov.
\begin{lemma}
\label{lemma-sober-local}
Let $X$ be a topological space. If $X$ has an open covering
$X = \bigcup X_i$ with $X_i$ sober (resp.\ Kolmogorov), then
$X$ is sober (resp.\ Kolmogorov).
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{example}
\label{example-Hausdorff}
Recall that a topological space $X$ is Hausdorff iff for every
distinct pair of points $x, y \in X$ there exist disjoint
opens $U, V \subset X$ such that $x \in U$, $y \in V$.
In this case $X$ is irreducible if and only if $X$ is
a singleton. Similarly, any subset of $X$ is irreducible
if and only if it is a singleton. Hence a Hausdorff space is
sober.
\end{example}
\begin{lemma}
\label{lemma-irreducible-on-top}
Let $f : X \to Y$ be a continuous map of topological spaces.
Assume that
(a) $Y$ is irreducible,
(b) $f$ is open, and
(c) there exists a dense collection of points $y \in Y$ such
that $f^{-1}(y)$ is irreducible.
Then $X$ is irreducible.
\end{lemma}
\begin{proof}
Suppose $Y = Z_1 \cup Z_2$ with $Z_i$ closed.
Consider the open sets $U_1 = Z_1 \setminus Z_2 = Y \setminus Z_2$ and
$U_2 = Z_2 \setminus Z_1 = Y \setminus Z_2$. To get a contradiction
assume that $U_1$ and $U_2$ are both nonempty. By (b) we see that $f(U_i)$
is open. By (a) we have $X$ irreducible and hence
$f(U_1) \cap f(U_2) \not = \emptyset$. By (c) there is a point $y$ which
corresponds to a point of this intersection such that the fibre
$X_y = f^{-1}(y)$ is irreducible. Then $X_y \cap U_1$ and
$X_y \cap U_2$ are nonempty disjoint open subsets of $X_y$ which is
a contradiction.
\end{proof}
\begin{lemma}
\label{lemma-irreducible-fibres-irreducible-components}
Let $f : X \to Y$ be a continuous map of topological spaces.
Assume that (a) $f$ is open, and
(b) for every $y \in Y$ the fibre $f^{-1}(y)$ is irreducible.
Then $f$ induces a bijection between irreducible components.
\end{lemma}
\begin{proof}
We point out that assumption (b) implies that $f$ is surjective (see
Definition \ref{definition-irreducible-components}).
Let $T \subset Y$ be an irreducible component.
Note that $T$ is closed, see Lemma \ref{lemma-irreducible}.
The lemma follows if we show that $p^{-1}(T)$ is irreducible
because any irreducible subset of $X$ maps into an irreducible component
of $Y$ by Lemma \ref{lemma-image-irreducible-space}.
Note that $p^{-1}(T) \to T$ satisfies the assumptions
of Lemma \ref{lemma-irreducible-on-top}. Hence we win.
\end{proof}
\section{Noetherian topological spaces}
\label{section-noetherian}
\begin{definition}
\label{definition-noetherian}
A topological space is called {\it Noetherian}
if the descending chain condition holds for
closed subsets of $X$. A topological space is called
{\it locally Noetherian} if every point has a neighbourhood
which is Noetherian.
\end{definition}
\begin{lemma}
\label{lemma-Noetherian}
Let $X$ be a Noetherian topological space.
\begin{enumerate}
\item Any subset of $X$ with the induced topology is Noetherian.
\item The space $X$ has finitely many irreducible components.
\item Each irreducible component of $X$ contains a nonempty open of $X$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $T \subset X$ be a subset of $X$.
Let $T_1 \supset T_2 \supset \ldots$
be a descending chain of closed subsets of $T$.
Write $T_i = T \cap Z_i$ with $Z_i \subset X$ closed.
Consider the descending chain of closed subsets
$Z_1 \supset Z_1\cap Z_2 \supset Z_1 \cap Z_2 \cap Z_3 \ldots$
This stabilizes by assumption and hence the original sequence
of $T_i$ stabilizes. Thus $T$ is Noetherian.
\medskip\noindent
Let $A$ be the set of closed subsets of $X$ which do not
have finitely many irreducible components. Assume that
$A$ is not empty to arrive at a contradiction.
The set $A$ is partially ordered by inclusion: $\alpha \leq \alpha'
\Leftrightarrow Z_{\alpha} \subset Z_{\alpha'}$.
By the descending chain condition we may find a
smallest element of $A$, say $Z$. As $Z$ is not a finite
union of irreducible components, it is not irreducible.
Hence we can write $Z = Z' \cup Z''$ and both are strictly smaller
closed subsets. By construction $Z' = \bigcup Z'_i$ and
$Z'' = \bigcup Z''_j$ are finite unions of their irreducible
components. Hence $Z = \bigcup Z'_i \cup \bigcup Z''_j$ is
a finite union of irreducible closed subsets.
After removing redundant members of this expression,
this will be the decomposition of $Z$ into its irreducible
components, a contradiction.
\medskip\noindent
Let $Z \subset X$ be an irreducible component of $X$.
Let $Z_1, \ldots, Z_n$ be the other irreducible components
of $X$. Consider $U = Z \setminus (Z_1\cup\ldots\cup Z_n)$.
This is not empty since otherwise the irreducible space
$Z$ would be contained in one of the other $Z_i$.
Because $X = Z \cup Z_1 \cup \ldots Z_n$ (see Lemma \ref{lemma-irreducible}),
also $U = X \setminus (Z_1\cup\ldots\cup Z_n)$
and hence open in $X$. Thus $Z$ contains a nonempty
open of $X$.
\end{proof}
\begin{lemma}
\label{lemma-image-Noetherian}
Let $f : X \to Y$ be a continuous map of topological spaces.
\begin{enumerate}
\item If $X$ is Noetherian, then $f(X)$ is Noetherian.
\item If $X$ is locally Noetherian and $f$ open, then $f(X)$ is
locally Noetherian.
\end{enumerate}
\end{lemma}
\begin{proof}
In case (1), suppose that $Z_1 \supset Z_2 \supset Z_2 \supset \ldots$
is a descending chain of closed subsets of $f(X)$ (as usual with the induced
topology as a subset of $Y$). Then
$f^{-1}(Z_1) \supset f^{-1}(Z_2) \supset f^{-1}(Z_3) \supset \ldots$ is
a descending chain of closed subsets of $X$. Hence this chain stabilizes.
Since $f(f^{-1}(Z_i)) = Z_i$ we conclude that
$Z_1 \supset Z_2 \supset Z_2 \supset \ldots$
stabilizes also. In case (2), let $y \in f(X)$. Choose $x \in X$ with
$f(x) = y$. By assumption there exists a neighbourhood $E \subset X$ of
$x$ which is Noetherian. Then $f(E) \subset f(X)$ is a neighbourhood
which is Noetherian by part (1).
\end{proof}
\begin{lemma}
\label{lemma-finite-union-Noetherian}
Let $X$ be a topological space.
Let $X_i \subset X$, $i = 1, \ldots, n$ be a finite collection of subsets.
If each $X_i$ is Noetherian (with the induced topology), then
$\bigcup_{i = 1, \ldots, n} X_i$ is Noetherian (with the induced topology).
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{example}
\label{example-locally-Noetherian-no-closed-point}
Any Noetherian topological space has a closed point (combine
Lemmas \ref{lemma-quasi-compact-closed-point} and
\ref{lemma-Noetherian-quasi-compact}).
Let $X = \{1, 2, 3, \ldots \}$. Define a topology on $X$
with opens $\emptyset$, $\{1, 2, \ldots, n\}$, $n \geq 1$
and $X$. Thus $X$ is a locally Noetherian topological space,
without any closed points. This space cannot be the underlying
topological space of a locally Noetherian scheme, see
Properties, Lemma \ref{properties-lemma-locally-Noetherian-closed-point}.
\end{example}
\begin{lemma}
\label{lemma-locally-Noetherian-locally-connected}
Let $X$ be a locally Noetherian topological space.
Then $X$ is locally connected.
\end{lemma}
\begin{proof}
Let $x \in X$. Let $E$ be a neighbourhood of $x$.
We have to find a connected neighbourhood of $x$ contained
in $E$. By assumption there exists a neighbourhood $E'$ of $x$
which is Noetherian. Then $E \cap E'$ is Noetherian, see
Lemma \ref{lemma-Noetherian}.
Let $E \cap E' = Y_1 \cup \ldots \cup Y_n$ be the decomposition
into irreducible components, see
Lemma \ref{lemma-Noetherian}.
Let $E'' = \bigcup_{x \in Y_i} Y_i$. This is a connected
subset of $E \cap E'$ containing $x$. It contains the open
$E \cap E' \setminus (\bigcup_{x \not \in Y_i} Y_i)$ of $E \cap E'$
and hence it is a neighbourhood of $x$ in $X$. This proves the lemma.
\end{proof}
\section{Krull dimension}
\label{section-krull-dimension}
\begin{definition}
\label{definition-Krull}
Let $X$ be a topological space.
\begin{enumerate}
\item A {\it chain of irreducible closed subsets} of $X$
is a sequence $Z_0 \subset Z_1 \subset \ldots \subset Z_n \subset X$
with $Z_i$ closed irreducible and $Z_i \not= Z_{i + 1}$ for
$i = 0, \ldots, n - 1$.
\item The {\it length} of a chain
$Z_0 \subset Z_1 \subset \ldots \subset Z_n \subset X$
of irreducible closed subsets of $X$ is the
integer $n$.
\item The {\it dimension} or more precisely the {\it Krull dimension}
$\dim(X)$ of $X$ is the element of
$\{-\infty, 0, 1, 2, 3, \ldots, \infty\}$ defined by the formula:
$$
\dim(X) =
\sup \{\text{lengths of chains of irreducible closed subsets}\}
$$
Thus $\dim(X) = -\infty$ if and only if $X$ is the empty space.
\item Let $x \in X$.
The {\it Krull dimension of $X$ at $x$} is defined as
$$
\dim_x(X) = \min \{\dim(U), x\in U\subset X\text{ open}\}
$$
the minimum of $\dim(U)$ where $U$ runs over the open
neighbourhoods of $x$ in $X$.
\end{enumerate}
\end{definition}
\noindent
Note that if $U' \subset U \subset X$ are open then
$\dim(U') \leq \dim(U)$. Hence if $\dim_x(X) = d$ then $x$
has a fundamental system of open neighbourhoods $U$ with
$\dim(U) = \dim_x(X)$.
\begin{example}
\label{example-Krull-Rn}
The Krull dimension of the usual Euclidean space
$\mathbf{R}^n$ is $0$.
\end{example}
\begin{example}
\label{example-krull-2set}
Let $X = \{s, \eta\}$ with open sets given
by $\{\emptyset, \{\eta\}, \{s, \eta\}\}$.
In this case a maximal chain of irreducible
closed subsets is $\{s\} \subset \{s, \eta\}$.
Hence $\dim(X) = 1$. It is easy to generalize
this example to get a $(n + 1)$-element topological
space of Krull dimension $n$.
\end{example}
\begin{definition}
\label{definition-equidimensional}
Let $X$ be a topological space.
We say that $X$ is {\it equidimensional} if every irreducible
component of $X$ has the same dimension.
\end{definition}
\section{Codimension and catenary spaces}
\label{section-catenary-spaces}
\begin{definition}
\label{definition-catenary}
Let $X$ be a topological space. We say $X$ is {\it catenary} if
for every pair of irreducible closed subsets $T \subset T'$
there exist a maximal chain of irreducible closed subsets
$$
T = T_0 \subset T_1 \subset \ldots \subset T_e = T'
$$
and every such chain has the same length.
\end{definition}
\begin{lemma}
\label{lemma-catenary}
Let $X$ be a topological space.
The following are equivalent:
\begin{enumerate}
\item $X$ is catenary,
\item $X$ has an open covering by catenary spaces.
\end{enumerate}
Moreover, in this case any locally closed subspace of $X$ is catenary.
\end{lemma}
\begin{proof}
Suppose that $X$ is catenary and that $U \subset X$ is an open
subset. The rule $T \mapsto \overline{T}$ defines a bijective
inclusion preserving map between the closed irreducible subsets
of $U$ and the closed irreducible subsets of $X$ which meet $U$.
Using this the lemma easily follows. Details omitted.
\end{proof}
\begin{definition}
\label{definition-codimension}
Let $X$ be a topological space.
Let $Y \subset X$ be an irreducible closed subset.
The {\it codimension} of $Y$ in $X$ is the supremum of
the lengths $e$ of chains
$$
Y = Y_0 \subset Y_1 \subset \ldots \subset Y_e \subset X
$$
of irreducible closed subsets in $X$ starting with $Y$.
We will denote this $\text{codim}(Y, X)$.
\end{definition}
\begin{lemma}
\label{lemma-codimension-at-generic-point}
Let $X$ be a topological space.
Let $Y \subset X$ be an irreducible closed subset.
Let $U \subset X$ be an open subset such that $Y \cap U$ is nonempty.
Then
$$
\text{codim}(Y, X) = \text{codim}(Y \cap U, U)
$$
\end{lemma}
\begin{proof}
Follows from the observation made in the proof of
Lemma \ref{lemma-catenary}.
\end{proof}
\begin{example}
\label{example-Noetherian-infinite-codimension}
Let $X = [0, 1]$ be the unit interval with the following
topology: The sets $[0, 1]$, $(1 - 1/n, 1]$ for $n \in \mathbf{N}$, and
$\emptyset$ are open. So the closed sets are
$\emptyset$, $\{0\}$, $[0, 1 - 1/n]$ for $n > 1$ and $[0, 1]$.
This is clearly a Noetherian topological space.
But the irreducible closed subset $Y = \{0\}$ has infinite
codimension $\text{codim}(Y, X) = \infty$.
To see this we just remark that all the closed sets
$[0, 1 - 1/n]$ are irreducible.
\end{example}
\begin{lemma}
\label{lemma-catenary-in-codimension}
Let $X$ be a topological space. The following are equivalent:
\begin{enumerate}
\item $X$ is catenary, and
\item for pair of irreducible closed subsets $Y \subset Y'$ we have
$\text{codim}(Y, Y') < \infty$ and for every triple
$Y \subset Y' \subset Y''$ of irreducible closed subsets we have
$$
\text{codim}(Y, Y'') = \text{codim}(Y, Y') + \text{codim}(Y', Y'').
$$
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Quasi-compact spaces and maps}
\label{section-quasi-compact}
\noindent
The phrase ``compact'' will be reserved
for Hausdorff topological spaces. And many spaces occurring
in algebraic geometry are not Hausdorff.
\begin{definition}
\label{definition-quasi-compact}
Quasi-compactness.
\begin{enumerate}
\item We say that a topological space $X$ is {\it quasi-compact}
if every open covering of $X$ has a finite refinement.
\item We say that a continuous map $f : X \to Y$ is {\it quasi-compact}
if the inverse image $f^{-1}(V)$ of every quasi-compact open $V \subset Y$
is quasi-compact.
\item We say a subset $Z \subset X$ is {\it retrocompact}
if the inclusion map $Z \to X$ is quasi-compact.
\end{enumerate}
\end{definition}
\noindent
In many texts on topology a space is called {\it compact} if it
is quasi-compact and Hausdorff; and in other texts the Hausdorff
condition is omitted. To avoid confusion in algebraic geometry
we use the term quasi-compact. Note that the notion of quasi-compactness
of a map is very different from the notion of a ``proper map''
in topology, since there one requires the inverse image of any
(quasi-)compact subset of the target to be (quasi-)compact,
whereas in the definition above we only consider quasi-compact
{\it open} sets.
\begin{lemma}
\label{lemma-composition-quasi-compact}
A composition of quasi-compact maps is quasi-compact.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-closed-in-quasi-compact}
A closed subset of a quasi-compact topological space is quasi-compact.
\end{lemma}
\begin{proof}
Let $E \subset X$ be a closed subset of the quasi-compact space $X$.
Let $E = \bigcup V_j$ be an open covering. Choose $U_j \subset X$
open such that $V_j = E \cap U_j$. Then $X = (X \setminus E) \cup \bigcup U_j$
is an open covering of $X$. Hence
$X = (X \setminus E) \cup U_{j_1} \cup \ldots \cup U_{j_n}$ for some
$n$ and indices $j_i$. Thus $E = V_{j_1} \cup \ldots \cup V_{j_n}$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-quasi-compact-in-Hausdorff}
Let $X$ be a Hausdorff topological space.
\begin{enumerate}
\item If $E \subset X$ is quasi-compact, then it is closed.
\item If $E_1, E_2 \subset X$ are disjoint quasi-compact subsets
then there exists opens $E_i \subset U_i$ with $U_1 \cap U_2 = \emptyset$.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). Let $x \in X$, $x \not \in E$.
For every $e \in E$ we can find disjoint opens $V_e$ and $U_e$
with $e \in V_e$ and $x \in U_e$. Since $E \subset \bigcup V_e$
we can find finitely many $e_1, \ldots, e_n$ such that
$E \subset V_{e_1} \cup \ldots \cup V_{e_n}$. Then
$U = U_{e_1} \cap \ldots \cap U_{e_n}$ is an open neighbourhood