forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
topologies.tex
2828 lines (2398 loc) · 97.3 KB
/
topologies.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Topologies on Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this document we explain what the different topologies on the
category of schemes are. Some references are \cite{SGA1} and \cite{Ner}.
Before doing so we would like to point out that there are many
different choices of sites (as defined in
Sites, Definition \ref{sites-definition-site}) which give rise to
the same notion of sheaf on the underlying category. Hence
our choices may be slightly different from those in the references
but ultimately lead to the same cohomology groups, etc.
\section{The general procedure}
\label{section-procedure}
\noindent
In this section we explain a general procedure for producing the
sites we will be working with. Suppose we want to study sheaves
over schemes with respect to some topology $\tau$. In order to
get a site, as in Sites, Definition \ref{sites-definition-site},
of schemes with that topology we have to do some work. Namely,
we cannot simply say ``consider all schemes with the Zariski topology''
since that would give a ``big'' category. Instead, in each section of
this chapter we will proceed as follows:
\begin{enumerate}
\item We define a class $\text{Cov}_\tau$ of coverings of schemes
satisfying the axioms of Sites, Definition \ref{sites-definition-site}.
It will always be the case that a Zariski open covering of
a scheme is a covering for $\tau$.
\item We single out a notion of standard
$\tau$-covering within the category of affine schemes.
\item We define what is an ``absolute'' big $\tau$-site $\Sch_\tau$.
These are the sites one gets by appropriately choosing a set of schemes
and a set of coverings.
\item For any object $S$ of $\Sch_\tau$
we define the big $\tau$-site $(\Sch/S)_\tau$ and for suitable
$\tau$ the small\footnote{The words big and
small here do not relate to bigness/smallness of the corresponding
categories.} $\tau$-site $S_\tau$.
\item In addition there is a site $(\textit{Aff}/S)_\tau$ using the
notion of standard $\tau$-covering of affines whose category of sheaves
is equivalent to the category of sheaves on $(\Sch/S)_\tau$.
\end{enumerate}
The above is a little clumsy in that we do not end up with a canonical
choice for the big $\tau$-site of a scheme, or even the small
$\tau$-site of a scheme. If you are willing to ignore set theoretic
difficulties, then you can work with classes and end up with
canonical big and small sites...
\section{The Zariski topology}
\label{section-zariski}
\begin{definition}
\label{definition-zariski-covering}
Let $T$ be a scheme. A {\it Zariski covering of $T$} is a family
of morphisms $\{f_i : T_i \to T\}_{i \in I}$ of schemes
such that each $f_i$ is an open immersion and such
that $T = \bigcup f_i(T_i)$.
\end{definition}
\noindent
This defines a (proper) class of coverings.
Next, we show that this notion satisfies the conditions of
Sites, Definition \ref{sites-definition-site}.
\begin{lemma}
\label{lemma-zariski}
Let $T$ be a scheme.
\begin{enumerate}
\item If $T' \to T$ is an isomorphism then $\{T' \to T\}$
is a Zariski covering of $T$.
\item If $\{T_i \to T\}_{i\in I}$ is a Zariski covering and for each
$i$ we have a Zariski covering $\{T_{ij} \to T_i\}_{j\in J_i}$, then
$\{T_{ij} \to T\}_{i \in I, j\in J_i}$ is a Zariski covering.
\item If $\{T_i \to T\}_{i\in I}$ is a Zariski covering
and $T' \to T$ is a morphism of schemes then
$\{T' \times_T T_i \to T'\}_{i\in I}$ is a Zariski covering.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-zariski-affine}
Let $T$ be an affine scheme. Let $\{T_i \to T\}_{i \in I}$ be a
Zariski covering of $T$. Then there exists a Zariski covering
$\{U_j \to T\}_{j = 1, \ldots, m}$ which is a refinement
of $\{T_i \to T\}_{i \in I}$ such that each $U_j$ is a standard
open of $T$, see
Schemes, Definition \ref{schemes-definition-standard-covering}.
Moreover, we may choose each $U_j$ to be an open of one of the $T_i$.
\end{lemma}
\begin{proof}
Follows as $T$ is quasi-compact and standard opens form a basis
for its topology. This is also proved in
Schemes, Lemma \ref{schemes-lemma-standard-open}.
\end{proof}
\noindent
Thus we define the corresponding standard coverings of affines as follows.
\begin{definition}
\label{definition-standard-Zariski}
Compare Schemes, Definition \ref{schemes-definition-standard-covering}.
Let $T$ be an affine scheme. A {\it standard Zariski covering}
of $T$ is a a Zariski covering $\{U_j \to T\}_{j = 1, \ldots, m}$
with each $U_j \to T$ inducing an isomorphism with a standard affine open
of $T$.
\end{definition}
\begin{definition}
\label{definition-big-zariski-site}
A {\it big Zariski site} is any site $\Sch_{Zar}$ as in
Sites, Definition \ref{sites-definition-site} constructed as follows:
\begin{enumerate}
\item Choose any set of schemes $S_0$, and any set of Zariski coverings
$\text{Cov}_0$ among these schemes.
\item As underlying category of $\Sch_{Zar}$
take any category $\Sch_\alpha$ constructed as in
Sets, Lemma \ref{sets-lemma-construct-category} starting with the set $S_0$.
\item As coverings of $\Sch_{Zar}$ choose any set of coverings as in
Sets, Lemma \ref{sets-lemma-coverings-site} starting with the
category $\Sch_\alpha$ and the class of Zariski coverings,
and the set $\text{Cov}_0$ chosen above.
\end{enumerate}
\end{definition}
\noindent
It is shown in Sites, Lemma \ref{sites-lemma-choice-set-coverings-immaterial}
that, after having chosen the category $\Sch_\alpha$, the
category of sheaves on $\Sch_\alpha$ does not depend on the
choice of coverings chosen in (3) above. In other words, the topos
$\Sh(\Sch_{Zar})$ only depends on the choice of
the category $\Sch_\alpha$. It is shown in
Sets, Lemma \ref{sets-lemma-what-is-in-it} that these categories
are closed under many constructions of algebraic geometry, e.g.,
fibre products and taking open and closed subschemes. We can also show
that the exact choice of $\Sch_\alpha$ does not matter
too much, see Section \ref{section-change-alpha}.
\medskip\noindent
Another approach would be to assume the existence of a
strongly inaccessible cardinal and to define $\Sch_{Zar}$
to be the category of schemes contained in a chosen universe with
set of coverings the Zariski coverings contained in that same
universe.
\medskip\noindent
Before we continue with the introduction of the big Zariski site of
a scheme $S$, let us point out that the topology on a big Zariski site
$\Sch_{Zar}$ is in some sense induced from the Zariski topology
on the category of all schemes.
\begin{lemma}
\label{lemma-zariski-induced}
Let $\Sch_{Zar}$ be a big Zariski site as in
Definition \ref{definition-big-zariski-site}.
Let $T \in \Ob(\Sch_{Zar})$.
Let $\{T_i \to T\}_{i \in I}$ be an arbitrary Zariski covering of $T$.
There exists a covering $\{U_j \to T\}_{j \in J}$ of $T$ in the site
$\Sch_{Zar}$ which is tautologically equivalent (see
Sites, Definition \ref{sites-definition-combinatorial-tautological})
to $\{T_i \to T\}_{i \in I}$.
\end{lemma}
\begin{proof}
Since each $T_i \to T$ is an open immersion, we see by
Sets, Lemma \ref{sets-lemma-what-is-in-it}
that each $T_i$ is isomorphic to an object $V_i$ of $\Sch_{Zar}$.
The covering $\{V_i \to T\}_{i \in I}$ is tautologically equivalent
to $\{T_i \to T\}_{i \in I}$ (using the identity map on $I$ both ways).
Moreover, $\{V_i \to T\}_{i \in I}$ is combinatorially equivalent to a
covering $\{U_j \to T\}_{j \in J}$ of $T$ in the site $\Sch_{Zar}$ by
Sets, Lemma \ref{sets-lemma-coverings-site}.
\end{proof}
\begin{definition}
\label{definition-big-small-Zariski}
Let $S$ be a scheme. Let $\Sch_{Zar}$ be a big Zariski
site containing $S$.
\begin{enumerate}
\item The {\it big Zariski site of $S$}, denoted
$(\Sch/S)_{Zar}$, is the site $\Sch_{Zar}/S$
introduced in Sites, Section \ref{sites-section-localize}.
\item The {\it small Zariski site of $S$}, which we denote
$S_{Zar}$, is the full subcategory of $(\Sch/S)_{Zar}$
whose objects are those $U/S$ such that $U \to S$ is an open immersion.
A covering of $S_{Zar}$ is any covering $\{U_i \to U\}$ of
$(\Sch/S)_{Zar}$ with $U \in \Ob(S_{Zar})$.
\item The {\it big affine Zariski site of $S$}, denoted
$(\textit{Aff}/S)_{Zar}$, is the full subcategory of
$(\Sch/S)_{Zar}$ whose objects are affine $U/S$.
A covering of $(\textit{Aff}/S)_{Zar}$ is any covering
$\{U_i \to U\}$ of $(\Sch/S)_{Zar}$ which is a
standard Zariski covering.
\end{enumerate}
\end{definition}
\noindent
It is not completely clear that the small Zariski site and
the big affine Zariski site are sites. We check this now.
\begin{lemma}
\label{lemma-verify-site-Zariski}
Let $S$ be a scheme. Let $\Sch_{Zar}$ be a big Zariski
site containing $S$.
Both $S_{Zar}$ and $(\textit{Aff}/S)_{Zar}$ are sites.
\end{lemma}
\begin{proof}
Let us show that $S_{Zar}$ is a site. It is a category with a
given set of families of morphisms with fixed target. Thus we
have to show properties (1), (2) and (3) of
Sites, Definition \ref{sites-definition-site}.
Since $(\Sch/S)_{Zar}$ is a site, it suffices to prove
that given any covering $\{U_i \to U\}$ of $(\Sch/S)_{Zar}$
with $U \in \Ob(S_{Zar})$ we also have $U_i \in \Ob(S_{Zar})$.
This follows from the definitions
as the composition of open immersions is an open immersion.
\medskip\noindent
Let us show that $(\textit{Aff}/S)_{Zar}$ is a site.
Reasoning as above, it suffices to show that the collection
of standard Zariski coverings of affines satisfies properties
(1), (2) and (3) of
Sites, Definition \ref{sites-definition-site}.
Let $R$ be a ring. Let $f_1, \ldots, f_n \in R$ generate the unit ideal.
For each $i \in \{1, \ldots, n\}$ let $g_{i1}, \ldots, g_{in_i} \in R_{f_i}$
be elements generating the unit ideal of $R_{f_i}$. Write
$g_{ij} = f_{ij}/f_i^{e_{ij}}$ which is possible. After replacing
$f_{ij}$ by $f_i f_{ij}$ if necessary, we have that
$D(f_{ij}) \subset D(f_i) \cong \Spec(R_{f_i})$ is
equal to $D(g_{ij}) \subset \Spec(R_{f_i})$. Hence we see that
the family of morphisms $\{D(g_{ij}) \to \Spec(R)\}$
is a standard Zariski covering. From these considerations
it follows that (2) holds for standard Zariski coverings.
We omit the verification of (1) and (3).
\end{proof}
\begin{lemma}
\label{lemma-fibre-products-Zariski}
Let $S$ be a scheme. Let $\Sch_{Zar}$ be a big Zariski
site containing $S$. The underlying categories of the sites
$\Sch_{Zar}$, $(\Sch/S)_{Zar}$,
$S_{Zar}$, and $(\textit{Aff}/S)_{Zar}$ have fibre products.
In each case the obvious functor into the category $\Sch$ of
all schemes commutes with taking fibre products. The categories
$(\Sch/S)_{Zar}$, and $S_{Zar}$ both have a final object,
namely $S/S$.
\end{lemma}
\begin{proof}
For $\Sch_{Zar}$ it is true by construction, see
Sets, Lemma \ref{sets-lemma-what-is-in-it}.
Suppose we have $U \to S$, $V \to U$, $W \to U$ morphisms
of schemes with $U, V, W \in \Ob(\Sch_{Zar})$.
The fibre product $V \times_U W$ in $\Sch_{Zar}$
is a fibre product in $\Sch$ and
is the fibre product of $V/S$ with $W/S$ over $U/S$ in
the category of all schemes over $S$, and hence also a
fibre product in $(\Sch/S)_{Zar}$.
This proves the result for $(\Sch/S)_{Zar}$.
If $U \to S$, $V \to U$ and $W \to U$ are open immersions then so is
$V \times_U W \to S$ and hence we get the result for $S_{Zar}$.
If $U, V, W$ are affine, so is $V \times_U W$ and hence the
result for $(\textit{Aff}/S)_{Zar}$.
\end{proof}
\noindent
Next, we check that the big affine site defines the same
topos as the big site.
\begin{lemma}
\label{lemma-affine-big-site-Zariski}
Let $S$ be a scheme. Let $\Sch_{Zar}$ be a big Zariski
site containing $S$.
The functor $(\textit{Aff}/S)_{Zar} \to (\Sch/S)_{Zar}$
is a special cocontinuous functor. Hence it induces an equivalence
of topoi from $\Sh((\textit{Aff}/S)_{Zar})$ to
$\Sh((\Sch/S)_{Zar})$.
\end{lemma}
\begin{proof}
The notion of a special cocontinuous functor is introduced in
Sites, Definition \ref{sites-definition-special-cocontinuous-functor}.
Thus we have to verify assumptions (1) -- (5) of
Sites, Lemma \ref{sites-lemma-equivalence}.
Denote the inclusion functor
$u : (\textit{Aff}/S)_{Zar} \to (\Sch/S)_{Zar}$.
Being cocontinuous just means that any Zariski covering of
$T/S$, $T$ affine, can be refined by a standard Zariski covering of $T$.
This is the content of
Lemma \ref{lemma-zariski-affine}.
Hence (1) holds. We see $u$ is continuous simply because a standard
Zariski covering is a Zariski covering. Hence (2) holds.
Parts (3) and (4) follow immediately from the fact that $u$ is
fully faithful. And finally condition (5) follows from the
fact that every scheme has an affine open covering.
\end{proof}
\noindent
Let us check that the notion of a sheaf on the small Zariski site
corresponds to notion of a sheaf on $S$.
\begin{lemma}
\label{lemma-Zariski-usual}
The category of sheaves on $S_{Zar}$ is equivalent to the
category of sheaves on the underlying topological space of $S$.
\end{lemma}
\begin{proof}
We will use repeatedly that for any object
$U/S$ of $S_{Zar}$ the morphism $U \to S$ is an isomorphism
onto an open subscheme.
Let $\mathcal{F}$ be a sheaf on $S$. Then we define a sheaf
on $S_{Zar}$ by the rule $\mathcal{F}'(U/S) = \mathcal{F}(\text{Im}(U \to S))$.
For the converse, we choose for every open subscheme $U \subset S$ an object
$U'/S \in \Ob(S_{Zar})$ with $\text{Im}(U' \to S) = U$
(here you have to use Sets, Lemma \ref{sets-lemma-what-is-in-it}).
Given a sheaf $\mathcal{G}$ on $S_{Zar}$ we define a sheaf on $S$ by setting
$\mathcal{G}(U) = \mathcal{G}(U'/S)$. To see that $\mathcal{G}'$ is
a sheaf we use that for any open covering $U = \bigcup_{i \in I} U_i$
the covering $\{U_i \to U\}_{i \in I}$
is combinatorially equivalent to a covering $\{U_j' \to U'\}_{j \in J}$
in $S_{Zar}$ by Sets, Lemma \ref{sets-lemma-coverings-site},
and we use Sites, Lemma \ref{sites-lemma-tautological-same-sheaf}.
Details omitted.
\end{proof}
\noindent
From now on we will not make any distinction between a sheaf on
$S_{Zar}$ or a sheaf on $S$. We will always use the procedures
of the proof of the lemma to go between the two notions.
Next, we establish some relationships between the topoi
associated to these sites.
\begin{lemma}
\label{lemma-put-in-T}
Let $\Sch_{Zar}$ be a big Zariski site.
Let $f : T \to S$ be a morphism in $\Sch_{Zar}$.
The functor $T_{Zar} \to (\Sch/S)_{Zar}$
is cocontinuous and induces a morphism of topoi
$$
i_f :
\Sh(T_{Zar})
\longrightarrow
\Sh((\Sch/S)_{Zar})
$$
For a sheaf $\mathcal{G}$ on $(\Sch/S)_{Zar}$
we have the formula $(i_f^{-1}\mathcal{G})(U/T) = \mathcal{G}(U/S)$.
The functor $i_f^{-1}$ also has a left adjoint $i_{f, !}$ which commutes
with fibre products and equalizers.
\end{lemma}
\begin{proof}
Denote the functor $u : T_{Zar} \to (\Sch/S)_{Zar}$.
In other words, given and open immersion $j : U \to T$ corresponding
to an object of $T_{Zar}$ we set $u(U \to T) = (f \circ j : U \to S)$.
This functor commutes with fibre products, see
Lemma \ref{lemma-fibre-products-Zariski}.
Moreover, $T_{Zar}$ has equalizers (as any two morphisms with the same
source and target are the same) and $u$ commutes with them.
It is clearly cocontinuous.
It is also continuous as $u$ transforms coverings to coverings and
commutes with fibre products. Hence the lemma follows from
Sites, Lemmas \ref{sites-lemma-when-shriek}
and \ref{sites-lemma-preserve-equalizers}.
\end{proof}
\begin{lemma}
\label{lemma-at-the-bottom}
Let $S$ be a scheme. Let $\Sch_{Zar}$ be a big Zariski
site containing $S$.
The inclusion functor $S_{Zar} \to (\Sch/S)_{Zar}$
satisfies the hypotheses of Sites, Lemma \ref{sites-lemma-bigger-site}
and hence induces a morphism of sites
$$
\pi_S : (\Sch/S)_{Zar} \longrightarrow S_{Zar}
$$
and a morphism of topoi
$$
i_S : \Sh(S_{Zar}) \longrightarrow \Sh((\Sch/S)_{Zar})
$$
such that $\pi_S \circ i_S = \text{id}$. Moreover, $i_S = i_{\text{id}_S}$
with $i_{\text{id}_S}$ as in Lemma \ref{lemma-put-in-T}. In particular the
functor $i_S^{-1} = \pi_{S, *}$ is described by the rule
$i_S^{-1}(\mathcal{G})(U/S) = \mathcal{G}(U/S)$.
\end{lemma}
\begin{proof}
In this case the functor $u : S_{Zar} \to (\Sch/S)_{Zar}$,
in addition to the properties seen in the proof of
Lemma \ref{lemma-put-in-T} above, also is fully faithful
and transforms the final object into the final object.
The lemma follows.
\end{proof}
\begin{definition}
\label{definition-restriction-small-zariski}
In the situation of
Lemma \ref{lemma-at-the-bottom}
the functor $i_S^{-1} = \pi_{S, *}$ is often
called the {\it restriction to the small Zariski site}, and for a sheaf
$\mathcal{F}$ on the big Zariski site we denote $\mathcal{F}|_{S_{Zar}}$
this restriction.
\end{definition}
\noindent
With this notation in place we have for a sheaf $\mathcal{F}$ on the
big site and a sheaf $\mathcal{G}$ on the big site that
\begin{align*}
\Mor_{\Sh(S_{Zar})}(\mathcal{F}|_{S_{Zar}}, \mathcal{G})
& =
\Mor_{\Sh((\Sch/S)_{Zar})}(\mathcal{F},
i_{S, *}\mathcal{G}) \\
\Mor_{\Sh(S_{Zar})}(\mathcal{G}, \mathcal{F}|_{S_{Zar}})
& =
\Mor_{\Sh((\Sch/S)_{Zar})}(\pi_S^{-1}\mathcal{G},
\mathcal{F})
\end{align*}
Moreover, we have $(i_{S, *}\mathcal{G})|_{S_{Zar}} = \mathcal{G}$
and we have $(\pi_S^{-1}\mathcal{G})|_{S_{Zar}} = \mathcal{G}$.
\begin{lemma}
\label{lemma-morphism-big}
Let $\Sch_{Zar}$ be a big Zariski site.
Let $f : T \to S$ be a morphism in $\Sch_{Zar}$.
The functor
$$
u : (\Sch/T)_{Zar} \longrightarrow (\Sch/S)_{Zar},
\quad
V/T \longmapsto V/S
$$
is cocontinuous, and has a continuous right adjoint
$$
v : (\Sch/S)_{Zar} \longrightarrow (\Sch/T)_{Zar},
\quad
(U \to S) \longmapsto (U \times_S T \to T).
$$
They induce the same morphism of topoi
$$
f_{big} :
\Sh((\Sch/T)_{Zar})
\longrightarrow
\Sh((\Sch/S)_{Zar})
$$
We have $f_{big}^{-1}(\mathcal{G})(U/T) = \mathcal{G}(U/S)$.
We have $f_{big, *}(\mathcal{F})(U/S) = \mathcal{F}(U \times_S T/T)$.
Also, $f_{big}^{-1}$ has a left adjoint $f_{big!}$ which commutes with
fibre products and equalizers.
\end{lemma}
\begin{proof}
The functor $u$ is cocontinuous, continuous, and commutes with fibre products
and equalizers (details omitted; compare with proof of
Lemma \ref{lemma-put-in-T}).
Hence
Sites, Lemmas \ref{sites-lemma-when-shriek} and
\ref{sites-lemma-preserve-equalizers}
apply and we deduce the formula
for $f_{big}^{-1}$ and the existence of $f_{big!}$. Moreover,
the functor $v$ is a right adjoint because given $U/T$ and $V/S$
we have $\Mor_S(u(U), V) = \Mor_T(U, V \times_S T)$
as desired. Thus we may apply
Sites, Lemmas \ref{sites-lemma-have-functor-other-way} and
\ref{sites-lemma-have-functor-other-way-morphism}
to get the formula for $f_{big, *}$.
\end{proof}
\begin{lemma}
\label{lemma-morphism-big-small}
Let $\Sch_{Zar}$ be a big Zariski site.
Let $f : T \to S$ be a morphism in $\Sch_{Zar}$.
\begin{enumerate}
\item We have $i_f = f_{big} \circ i_T$ with $i_f$ as in
Lemma \ref{lemma-put-in-T} and $i_T$ as in
Lemma \ref{lemma-at-the-bottom}.
\item The functor $S_{Zar} \to T_{Zar}$,
$(U \to S) \mapsto (U \times_S T \to T)$ is continuous and induces
a morphism of topoi
$$
f_{small} :
\Sh(T_{Zar})
\longrightarrow
\Sh(S_{Zar}).
$$
The functors $f_{small}^{-1}$ and $f_{small, *}$ agree with
the usual notions $f^{-1}$ and $f_*$ is we identify sheaves
on $T_{Zar}$, resp.\ $S_{Zar}$ with sheaves on $T$, resp.\ $S$
via Lemma \ref{lemma-Zariski-usual}.
\item We have a commutative diagram of morphisms of sites
$$
\xymatrix{
T_{Zar} \ar[d]_{f_{small}} &
(\Sch/T)_{Zar} \ar[d]^{f_{big}} \ar[l]^{\pi_T} \\
S_{Zar} &
(\Sch/S)_{Zar} \ar[l]_{\pi_S}
}
$$
so that $f_{small} \circ \pi_T = \pi_S \circ f_{big}$ as morphisms of topoi.
\item We have $f_{small} = \pi_S \circ f_{big} \circ i_T = \pi_S \circ i_f$.
\end{enumerate}
\end{lemma}
\begin{proof}
The equality $i_f = f_{big} \circ i_T$ follows from the
equality $i_f^{-1} = i_T^{-1} \circ f_{big}^{-1}$ which is
clear from the descriptions of these functors above.
Thus we see (1).
\medskip\noindent
Statement (2): See Sites, Example \ref{sites-example-continuous-map}.
\medskip\noindent
Part (3) follows because $\pi_S$ and $\pi_T$ are given by
the inclusion functors and $f_{small}$ and $f_{big}$ by the
base change functor $U \mapsto U \times_S T$.
\medskip\noindent
Statement (4) follows from (3) by precomposing with $i_T$.
\end{proof}
\noindent
In the situation of the lemma, using the terminology of
Definition \ref{definition-restriction-small-zariski}
we have: for $\mathcal{F}$ a sheaf on the big Zariski site of $T$
$$
(f_{big, *}\mathcal{F})|_{S_{Zar}} =
f_{small, *}(\mathcal{F}|_{T_{Zar}}),
$$
This equality is clear from the commutativity of the diagram of
sites of the lemma, since restriction to the small Zariski site of
$T$, resp.\ $S$ is given by $\pi_{T, *}$, resp.\ $\pi_{S, *}$. A similar
formula involving pullbacks and restrictions is false.
\begin{lemma}
\label{lemma-composition}
Given schemes $X$, $Y$, $Y$ in $(\Sch/S)_{Zar}$
and morphisms $f : X \to Y$, $g : Y \to Z$ we have
$g_{big} \circ f_{big} = (g \circ f)_{big}$ and
$g_{small} \circ f_{small} = (g \circ f)_{small}$.
\end{lemma}
\begin{proof}
This follows from the simple description of pushforward
and pullback for the functors on the big sites from
Lemma \ref{lemma-morphism-big}. For the functors
on the small sites this is
Sheaves, Lemma \ref{sheaves-lemma-pushforward-composition}
via the identification of Lemma \ref{lemma-Zariski-usual}.
\end{proof}
\noindent
We can think about a sheaf on the big Zariski site of $S$ as a collection
of ``usual'' sheaves on all schemes over $S$.
\begin{lemma}
\label{lemma-characterize-sheaf-big}
Let $S$ be a scheme contained in a big Zariski site $\Sch_{Zar}$.
A sheaf $\mathcal{F}$ on the big Zariski site $(\Sch/S)_{Zar}$
is given by the following data:
\begin{enumerate}
\item for every $T/S \in \Ob((\Sch/S)_{Zar})$ a sheaf
$\mathcal{F}_T$ on $T$,
\item for every $f : T' \to T$ in
$(\Sch/S)_{Zar}$ a map
$c_f : f^{-1}\mathcal{F}_T \to \mathcal{F}_{T'}$.
\end{enumerate}
These data are subject to the following conditions:
\begin{enumerate}
\item[(\romannumeral1)] given any $f : T' \to T$ and $g : T'' \to T'$ in
$(\Sch/S)_{Zar}$ the composition $g^{-1}c_f \circ c_g$
is equal to $c_{f \circ g}$, and
\item[(\romannumeral2)] if $f : T' \to T$ in $(\Sch/S)_{Zar}$ is an
open immersion then $c_f$ is an isomorphism.
\end{enumerate}
\end{lemma}
\begin{proof}
Given a sheaf $\mathcal{F}$ on $\Sh((\Sch/S)_{Zar})$
we set $\mathcal{F}_T = i_p^{-1}\mathcal{F}$ where $p : T \to S$
is the structure morphism. Note that
$\mathcal{F}_T(U) = \mathcal{F}(U'/S)$ for any open $U \subset T$,
and $U' \to T$ an open immersion in $(\Sch/T)_{Zar}$
with image $U$, see Lemmas \ref{lemma-Zariski-usual} and \ref{lemma-put-in-T}.
Hence given $f : T' \to T$ over $S$ and $U, U' \to T$ we get a canonical
map $\mathcal{F}_T(U) = \mathcal{F}(U'/S) \to \mathcal{F}(U'\times_T T'/S)
= \mathcal{F}_{T'}(f^{-1}(U))$ where the middle is the restriction map
of $\mathcal{F}$ with respect to the morphism
$U' \times_T T' \to U'$ over $S$. The collection of these maps are
compatible with restrictions, and hence define an $f$-map $c_f$
from $\mathcal{F}_T$ to $\mathcal{F}_{T'}$, see
Sheaves, Definition \ref{sheaves-definition-f-map} and the discussion
surrounding it. It is clear that $c_{f \circ g}$ is the composition of
$c_f$ and $c_g$, since composition of restriction maps of $\mathcal{F}$
gives restriction maps.
\medskip\noindent
Conversely, given a system $(\mathcal{F}_T, c_f)$ as in the lemma
we may define a presheaf $\mathcal{F}$ on $\Sh((\Sch/S)_{Zar})$
by simply setting $\mathcal{F}(T/S) = \mathcal{F}_T(T)$. As restriction
mapping, given $f : T' \to T$ we set for $s \in \mathcal{F}(T)$
the pullback $f^*(s)$ equal to $c_f(s)$ (where we think of $c_f$ as
an $f$-map again). The condition on the $c_f$ guarantees that
pullbacks satisfy the required functoriality property.
We omit the verification that this is a sheaf.
It is clear that the constructions so defined are mutually inverse.
\end{proof}
\section{The \'etale topology}
\label{section-etale}
\noindent
Let $S$ be a scheme. We would like to define the \'etale-topology on
the category of schemes over $S$. According to our general principle
we first introduce the notion of an \'etale covering.
\begin{definition}
\label{definition-etale-covering}
Let $T$ be a scheme. An {\it \'etale covering of $T$} is a family
of morphisms $\{f_i : T_i \to T\}_{i \in I}$ of schemes
such that each $f_i$ is \'etale and such that $T = \bigcup f_i(T_i)$.
\end{definition}
\begin{lemma}
\label{lemma-zariski-etale}
Any Zariski covering is an \'etale covering.
\end{lemma}
\begin{proof}
This is clear from the definitions and the fact that an open immersion
is an \'etale morphism, see
Morphisms, Lemma \ref{morphisms-lemma-open-immersion-etale}.
\end{proof}
\noindent
Next, we show that this notion satisfies the conditions of
Sites, Definition \ref{sites-definition-site}.
\begin{lemma}
\label{lemma-etale}
Let $T$ be a scheme.
\begin{enumerate}
\item If $T' \to T$ is an isomorphism then $\{T' \to T\}$
is an \'etale covering of $T$.
\item If $\{T_i \to T\}_{i\in I}$ is an \'etale covering and for each
$i$ we have an \'etale covering $\{T_{ij} \to T_i\}_{j\in J_i}$, then
$\{T_{ij} \to T\}_{i \in I, j\in J_i}$ is an \'etale covering.
\item If $\{T_i \to T\}_{i\in I}$ is an \'etale covering
and $T' \to T$ is a morphism of schemes then
$\{T' \times_T T_i \to T'\}_{i\in I}$ is an \'etale covering.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-etale-affine}
Let $T$ be an affine scheme.
Let $\{T_i \to T\}_{i \in I}$ be an \'etale covering of $T$.
Then there exists an \'etale covering
$\{U_j \to T\}_{j = 1, \ldots, m}$ which is a refinement
of $\{T_i \to T\}_{i \in I}$ such that each $U_j$ is an affine
scheme. Moreover, we may choose each $U_j$ to be open affine
in one of the $T_i$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\noindent
Thus we define the corresponding standard coverings of affines as follows.
\begin{definition}
\label{definition-standard-etale}
Let $T$ be an affine scheme. A {\it standard \'etale covering}
of $T$ is a family $\{f_j : U_j \to T\}_{j = 1, \ldots, m}$
with each $U_j$ is affine and \'etale over $T$ and
$T = \bigcup f_j(U_j)$.
\end{definition}
\noindent
In the definition above we do {\bf not} assume the morphisms $f_j$ are
standard \'etale. The reason is that if we did then the standard \'etale
coverings would not define a site on $\textit{Aff}/S$, for example because of
Algebra, Lemma \ref{algebra-lemma-standard-etale} part (4).
On the other hand, an \'etale morphism of affines is automatically
standard smooth, see
Algebra, Lemma \ref{algebra-lemma-etale-standard-smooth}.
Hence a standard \'etale covering is a standard smooth
covering and a standard syntomic covering.
\begin{definition}
\label{definition-big-etale-site}
A {\it big \'etale site} is any site $\Sch_\etale$ as in
Sites, Definition \ref{sites-definition-site} constructed as follows:
\begin{enumerate}
\item Choose any set of schemes $S_0$, and any set of \'etale coverings
$\text{Cov}_0$ among these schemes.
\item As underlying category take any category $\Sch_\alpha$
constructed as in Sets, Lemma \ref{sets-lemma-construct-category}
starting with the set $S_0$.
\item Choose any set of coverings as in
Sets, Lemma \ref{sets-lemma-coverings-site} starting with the
category $\Sch_\alpha$ and the class of \'etale coverings,
and the set $\text{Cov}_0$ chosen above.
\end{enumerate}
\end{definition}
\noindent
See the remarks following Definition \ref{definition-big-zariski-site}
for motivation and explanation regarding the definition of big sites.
\medskip\noindent
Before we continue with the introduction of the big \'etale site of
a scheme $S$, let us point out that the topology on a big \'etale site
$\Sch_\etale$ is in some sense induced from the \'etale
topology on the category of all schemes.
\begin{lemma}
\label{lemma-etale-induced}
Let $\Sch_\etale$ be a big \'etale site as in
Definition \ref{definition-big-etale-site}.
Let $T \in \Ob(\Sch_\etale)$.
Let $\{T_i \to T\}_{i \in I}$ be an arbitrary \'etale covering of $T$.
\begin{enumerate}
\item There exists a covering $\{U_j \to T\}_{j \in J}$ of $T$ in the site
$\Sch_\etale$ which refines $\{T_i \to T\}_{i \in I}$.
\item If $\{T_i \to T\}_{i \in I}$ is a standard \'etale covering, then
it is tautologically equivalent to a covering in $\Sch_\etale$.
\item If $\{T_i \to T\}_{i \in I}$ is a Zariski covering, then
it is tautologically equivalent to a covering in $\Sch_\etale$.
\end{enumerate}
\end{lemma}
\begin{proof}
For each $i$ choose an affine open covering $T_i = \bigcup_{j \in J_i} T_{ij}$
such that each $T_{ij}$ maps into an affine open subscheme of $T$. By
Lemma \ref{lemma-etale}
the refinement $\{T_{ij} \to T\}_{i \in I, j \in J_i}$ is an \'etale covering
of $T$ as well. Hence we may assume each $T_i$ is affine, and maps into
an affine open $W_i$ of $T$. Applying
Sets, Lemma \ref{sets-lemma-what-is-in-it}
we see that $W_i$ is isomorphic to an object of $\Sch_{Zar}$.
But then $T_i$ as a finite type scheme over $W_i$
is isomorphic to an object $V_i$ of $\Sch_{Zar}$ by a second
application of
Sets, Lemma \ref{sets-lemma-what-is-in-it}.
The covering $\{V_i \to T\}_{i \in I}$ refines $\{T_i \to T\}_{i \in I}$
(because they are isomorphic).
Moreover, $\{V_i \to T\}_{i \in I}$ is combinatorially equivalent to a
covering $\{U_j \to T\}_{j \in J}$ of $T$ in the site
$\Sch_{Zar}$ by
Sets, Lemma \ref{sets-lemma-what-is-in-it}.
The covering $\{U_j \to T\}_{j \in J}$ is a refinement as in (1).
In the situation of (2), (3) each of the
schemes $T_i$ is isomorphic to an object of $\Sch_\etale$ by
Sets, Lemma \ref{sets-lemma-what-is-in-it},
and another application of
Sets, Lemma \ref{sets-lemma-coverings-site}
gives what we want.
\end{proof}
\begin{definition}
\label{definition-big-small-etale}
Let $S$ be a scheme. Let $\Sch_\etale$ be a big \'etale
site containing $S$.
\begin{enumerate}
\item The {\it big \'etale site of $S$}, denoted
$(\Sch/S)_\etale$, is the site
$\Sch_\etale/S$ introduced in
Sites, Section \ref{sites-section-localize}.
\item The {\it small \'etale site of $S$}, which we denote
$S_\etale$, is the full subcategory of
$(\Sch/S)_\etale$
whose objects are those $U/S$ such that $U \to S$ is \'etale.
A covering of $S_\etale$ is any covering $\{U_i \to U\}$ of
$(\Sch/S)_\etale$ with $U \in \Ob(S_\etale)$.
\item The {\it big affine \'etale site of $S$}, denoted
$(\textit{Aff}/S)_\etale$, is the full subcategory of
$(\Sch/S)_\etale$ whose objects are affine $U/S$.
A covering of $(\textit{Aff}/S)_\etale$ is any covering
$\{U_i \to U\}$ of $(\Sch/S)_\etale$ which is a
standard \'etale covering.
\end{enumerate}
\end{definition}
\noindent
It is not completely clear that
the big affine \'etale site or the small \'etale site are sites.
We check this now.
\begin{lemma}
\label{lemma-verify-site-etale}
Let $S$ be a scheme. Let $\Sch_\etale$ be a big \'etale
site containing $S$.
Both $S_\etale$ and $(\textit{Aff}/S)_\etale$ are sites.
\end{lemma}
\begin{proof}
Let us show that $S_\etale$ is a site. It is a category with a
given set of families of morphisms with fixed target. Thus we
have to show properties (1), (2) and (3) of
Sites, Definition \ref{sites-definition-site}.
Since $(\Sch/S)_\etale$ is a site, it suffices to prove
that given any covering $\{U_i \to U\}$ of $(\Sch/S)_\etale$
with $U \in \Ob(S_\etale)$ we also have
$U_i \in \Ob(S_\etale)$.
This follows from the definitions as the composition of \'etale morphisms
is an \'etale morphism.
\medskip\noindent
Let us show that $(\textit{Aff}/S)_\etale$ is a site.
Reasoning as above, it suffices to show that the collection
of standard \'etale coverings of affines satisfies properties
(1), (2) and (3) of
Sites, Definition \ref{sites-definition-site}.
This is clear since for example, given a standard \'etale
covering $\{T_i \to T\}_{i\in I}$ and for each
$i$ we have a standard \'etale covering $\{T_{ij} \to T_i\}_{j\in J_i}$, then
$\{T_{ij} \to T\}_{i \in I, j\in J_i}$ is a standard \'etale covering
because $\bigcup_{i\in I} J_i$ is finite and each $T_{ij}$ is affine.
\end{proof}
\begin{lemma}
\label{lemma-fibre-products-etale}
Let $S$ be a scheme. Let $\Sch_\etale$ be a big \'etale
site containing $S$. The underlying categories of the sites
$\Sch_\etale$, $(\Sch/S)_\etale$,
$S_\etale$, and $(\textit{Aff}/S)_\etale$ have fibre products.
In each case the obvious functor into the category $\Sch$ of
all schemes commutes with taking fibre products. The categories
$(\Sch/S)_\etale$, and $S_\etale$ both have a
final object, namely $S/S$.
\end{lemma}
\begin{proof}
For $\Sch_\etale$ it is true by construction, see
Sets, Lemma \ref{sets-lemma-what-is-in-it}.
Suppose we have $U \to S$, $V \to U$, $W \to U$ morphisms
of schemes with $U, V, W \in \Ob(\Sch_\etale)$.
The fibre product $V \times_U W$ in $\Sch_\etale$
is a fibre product in $\Sch$ and
is the fibre product of $V/S$ with $W/S$ over $U/S$ in
the category of all schemes over $S$, and hence also a
fibre product in $(\Sch/S)_\etale$.
This proves the result for $(\Sch/S)_\etale$.
If $U \to S$, $V \to U$ and $W \to U$ are \'etale then so is
$V \times_U W \to S$ and hence we get the result for $S_\etale$.
If $U, V, W$ are affine, so is $V \times_U W$ and hence the
result for $(\textit{Aff}/S)_\etale$.
\end{proof}
\noindent
Next, we check that the big affine site defines the same
topos as the big site.
\begin{lemma}
\label{lemma-affine-big-site-etale}
Let $S$ be a scheme. Let $\Sch_\etale$ be a big \'etale
site containing $S$.
The functor
$(\textit{Aff}/S)_\etale \to (\Sch/S)_\etale$
is special cocontinuous and induces an equivalence of topoi from
$\Sh((\textit{Aff}/S)_\etale)$ to
$\Sh((\Sch/S)_\etale)$.
\end{lemma}
\begin{proof}
The notion of a special cocontinuous functor is introduced in
Sites, Definition \ref{sites-definition-special-cocontinuous-functor}.
Thus we have to verify assumptions (1) -- (5) of
Sites, Lemma \ref{sites-lemma-equivalence}.
Denote the inclusion functor
$u : (\textit{Aff}/S)_\etale \to (\Sch/S)_\etale$.
Being cocontinuous just means that any \'etale covering of
$T/S$, $T$ affine, can be refined by a standard \'etale covering of $T$.
This is the content of
Lemma \ref{lemma-etale-affine}.
Hence (1) holds. We see $u$ is continuous simply because a standard
\'etale covering is a \'etale covering. Hence (2) holds.
Parts (3) and (4) follow immediately from the fact that $u$ is
fully faithful. And finally condition (5) follows from the
fact that every scheme has an affine open covering.
\end{proof}
\noindent
Next, we establish some relationships between the topoi
associated to these sites.
\begin{lemma}
\label{lemma-put-in-T-etale}
Let $\Sch_\etale$ be a big \'etale site.
Let $f : T \to S$ be a morphism in $\Sch_\etale$.
The functor $T_\etale \to (\Sch/S)_\etale$
is cocontinuous and induces a morphism of topoi
$$
i_f :
\Sh(T_\etale)
\longrightarrow
\Sh((\Sch/S)_\etale)
$$
For a sheaf $\mathcal{G}$ on $(\Sch/S)_\etale$
we have the formula $(i_f^{-1}\mathcal{G})(U/T) = \mathcal{G}(U/S)$.
The functor $i_f^{-1}$ also has a left adjoint $i_{f, !}$ which commutes
with fibre products and equalizers.
\end{lemma}
\begin{proof}
Denote the functor $u : T_\etale \to (\Sch/S)_\etale$.
In other words, given an \'etale morphism $j : U \to T$ corresponding
to an object of $T_\etale$ we set $u(U \to T) = (f \circ j : U \to S)$.
This functor commutes with fibre products, see
Lemma \ref{lemma-fibre-products-etale}.
Let $a, b : U \to V$ be two morphisms in $T_\etale$.
In this case the equalizer of $a$ and $b$ (in the category of schemes) is
$$
V \times_{\Delta_{V/T}, V \times_T V, (a, b)} U \times_T U
$$
which is a fibre product of schemes \'etale over $T$, hence \'etale
over $T$. Thus $T_\etale$ has equalizers and $u$ commutes with them.
It is clearly cocontinuous.
It is also continuous as $u$ transforms coverings to coverings and
commutes with fibre products. Hence the Lemma follows from
Sites, Lemmas \ref{sites-lemma-when-shriek}
and \ref{sites-lemma-preserve-equalizers}.
\end{proof}
\begin{lemma}
\label{lemma-at-the-bottom-etale}
Let $S$ be a scheme. Let $\Sch_\etale$ be a big \'etale
site containing $S$.
The inclusion functor $S_\etale \to (\Sch/S)_\etale$
satisfies the hypotheses of Sites, Lemma \ref{sites-lemma-bigger-site}
and hence induces a morphism of sites
$$
\pi_S : (\Sch/S)_\etale \longrightarrow S_\etale
$$
and a morphism of topoi
$$
i_S : \Sh(S_\etale) \longrightarrow \Sh((\Sch/S)_\etale)
$$
such that $\pi_S \circ i_S = \text{id}$. Moreover, $i_S = i_{\text{id}_S}$
with $i_{\text{id}_S}$ as in Lemma \ref{lemma-put-in-T-etale}.
In particular the functor $i_S^{-1} = \pi_{S, *}$ is described by the rule
$i_S^{-1}(\mathcal{G})(U/S) = \mathcal{G}(U/S)$.
\end{lemma}