forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stacks.tex
3244 lines (2950 loc) · 119 KB
/
stacks.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Stacks}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this very short chapter we introduce stacks, and
stacks in groupoids. See \cite{DM}, and \cite{Vis2}.
\section{Presheaves of morphisms associated to fibred categories}
\label{section-morphisms}
\noindent
Let $\mathcal{C}$ be a category.
Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category,
see Categories, Section \ref{categories-section-fibred-categories}.
Suppose that $x, y\in \Ob(\mathcal{S}_U)$ are
objects in the fibre category over $U$. We are going to define
a functor
$$
\mathit{Mor}(x, y) : (\mathcal{C}/U)^{opp} \longrightarrow \textit{Sets}.
$$
In other words this will be a presheaf on $\mathcal{C}/U$, see
Sites, Definition \ref{sites-definition-presheaf}.
Make a choice of pullbacks as in
Categories,
Definition \ref{categories-definition-pullback-functor-fibred-category}.
Then, for $f : V \to U$ we set
$$
\mathit{Mor}(x, y)(f : V \to U) =
\Mor_{\mathcal{S}_V}(f^\ast x, f^\ast y).
$$
Let $f' : V' \to U$ be a second object of $\mathcal{C}/U$.
We also have to define the restriction map corresponding to a
morphism $g : V'/U \to V/U$ in $\mathcal{C}/U$,
in other words $g : V' \to V$ and $f' = f \circ g$.
This will be a map
$$
\Mor_{\mathcal{S}_V}(f^\ast x, f^\ast y)
\longrightarrow
\Mor_{\mathcal{S}_{V'}}({f'}^\ast x, {f'}^\ast y), \quad
\phi \longmapsto \phi|_{V'}
$$
This map will basically be $g^\ast$, except that this transforms
an element $\phi$ of the left hand side into an element
$g^\ast \phi$
of $\Mor_{\mathcal{S}_{V'}}(g^\ast f^\ast x, g^\ast f^\ast y)$.
At this point we use the transformation $\alpha_{g, f}$ of
Categories, Lemma \ref{categories-lemma-fibred}.
In a formula, the restriction map is described by
$$
\phi|_{V'} =
(\alpha_{g, f})_y^{-1} \circ
g^\ast \phi \circ
(\alpha_{g, f})_x.
$$
Of course, nobody thinks of this restriction map in this way.
We will only do this once in order to verify the following
lemma.
\begin{lemma}
\label{lemma-painful}
This actually does give a presheaf.
\end{lemma}
\begin{proof}
Let $g : V'/U \to V/U$ be as above and similarly
$g' : V''/U \to V'/U$ be morphisms in $\mathcal{C}/U$.
So $f' = f \circ g$ and $f'' = f' \circ g' = f \circ g \circ g'$.
Let $\phi \in \Mor_{\mathcal{S}_V}(f^\ast x, f^\ast y)$.
Then we have
\begin{eqnarray*}
& &
(\alpha_{g \circ g', f})_y^{-1} \circ
(g \circ g')^\ast \phi \circ
(\alpha_{g \circ g', f})_x
\\
& = &
(\alpha_{g \circ g', f})_y^{-1} \circ
(\alpha_{g', g})_{f^*y}^{-1} \circ
(g')^*g^\ast \phi \circ
(\alpha_{g', g})_{f^*x} \circ
(\alpha_{g \circ g', f})_x
\\
& = &
(\alpha_{g', f'})_y^{-1} \circ
(g')^*(\alpha_{g, f})_y^{-1} \circ
(g')^* g^\ast \phi \circ
(g')^*(\alpha_{g, f})_x
\circ
(\alpha_{g', f'})_x
\\
& = &
(\alpha_{g', f'})_y^{-1} \circ
(g')^*\Big(
(\alpha_{g, f})_y^{-1} \circ
g^\ast \phi \circ
(\alpha_{g, f})_x
\Big) \circ
(\alpha_{g', f'})_x
\end{eqnarray*}
which is what we want, namely $\phi|_{V''} = (\phi|_{V'})|_{V''}$.
The first equality holds because
$\alpha_{g', g}$ is a transformation of functors, and hence
$$
\xymatrix{
(g \circ g')^*f^*x
\ar[rr]_{(g \circ g')^\ast \phi}
\ar[d]_{(\alpha_{g', g})_{f^*x}} & &
(g \circ g')^*f^*y
\ar[d]^{(\alpha_{g', g})_{f^*y}} \\
(g')^*g^*f^*x
\ar[rr]^{(g')^*g^\ast \phi} & &
(g')^*g^*f^*y
}
$$
commutes. The second equality holds because of property (d) of
a pseudo functor since $f' = f \circ g$ (see
Categories, Definition \ref{categories-definition-functor-into-2-category}).
The last equality follows from the fact that $(g')^*$ is a functor.
\end{proof}
\noindent
From now on we often omit mentioning the transformations
$\alpha_{g, f}$ and we simply identify the functors
$g^* \circ f^*$ and $(f \circ g)^*$. In particular,
given $g : V'/U \to V/U$ the restriction
mappings for the presheaf $\mathit{Mor}(x, y)$
will sometimes be denoted $\phi \mapsto g^*\phi$.
We formalize the construction in a definition.
\begin{definition}
\label{definition-mor-presheaf}
Let $\mathcal{C}$ be a category.
Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category,
see Categories, Section \ref{categories-section-fibred-categories}.
Given an object $U$ of $\mathcal{C}$ and objects
$x$, $y$ of the fibre category, the {\it presheaf
of morphisms from $x$ to $y$} is the presheaf
$$
(f : V \to U) \longmapsto \Mor_{\mathcal{S}_V}(f^*x, f^*y)
$$
described above. It is denoted $\mathit{Mor}(x, y)$.
The subpresheaf $\mathit{Isom}(x, y)$ whose values
over $V$ is the set of isomorphisms
$f^*x \to f^*y$ in the fibre category $\mathcal{S}_V$
is called the {\it presheaf of isomorphisms from $x$ to $y$}.
\end{definition}
\noindent
If $\mathcal{S}$ is fibred in groupoids then of course
$\mathit{Isom}(x, y) = \mathit{Mor}(x, y)$, and it is
customary to use the $\mathit{Isom}$ notation.
\begin{lemma}
\label{lemma-presheaf-mor-map-fibred-categories}
Let $F : \mathcal{S}_1 \to \mathcal{S}_2$ be a $1$-morphism of fibred
categories over the category $\mathcal{C}$. Let $U \in \Ob(\mathcal{C})$
and $x, y\in \Ob(\mathcal{S}_U)$. Then $F$ defines a canonical
morphism of presheaves
$$
\mathit{Mor}_{\mathcal{S}_1}(x, y)
\longrightarrow
\mathit{Mor}_{\mathcal{S}_2}(F(x), F(y))
$$
on $\mathcal{C}/U$.
\end{lemma}
\begin{proof}
By
Categories, Definition \ref{categories-definition-fibred-categories-over-C}
the functor $F$ maps strongly cartesian morphisms to strongly cartesian
morphisms. Hence if $f : V \to U$ is a morphism in $\mathcal{C}$, then
there are canonical isomorphisms $\alpha_V : f^*F(x) \to F(f^*x)$,
$\beta_V : f^*F(y) \to F(f^*y)$ such that $f^*F(x) \to F(f^*x) \to F(x)$
is the canonical morphism $f^*F(x) \to F(x)$, and similarly for $\beta_V$.
Thus we may define
$$
\xymatrix{
\mathit{Mor}_{\mathcal{S}_1}(x, y)(f : V \to U) \ar@{=}[r] &
\Mor_{\mathcal{S}_{1, V}}(f^\ast x, f^\ast y) \ar[d] \\
\mathit{Mor}_{\mathcal{S}_2}(F(x), F(y))(f : V \to U) \ar@{=}[r] &
\Mor_{\mathcal{S}_{2, V}}(f^\ast F(x), f^\ast F(y))
}
$$
by $\phi \mapsto \beta_V^{-1} \circ F(\phi) \circ \alpha_V$.
We omit the verification that this is compatible with the restriction
mappings.
\end{proof}
\begin{remark}
\label{remark-alternative}
Suppose that $p : \mathcal{S} \to \mathcal{C}$ is fibred in groupoids.
In this case we can prove
Lemma \ref{lemma-painful}
using
Categories, Lemma \ref{categories-lemma-fibred-strict}
which says that $\mathcal{S} \to \mathcal{C}$ is equivalent to the
category associated to a contravariant functor
$F : \mathcal{C} \to \text{Groupoids}$.
In the case of the fibred category associated to $F$
we have $g^* \circ f^* = (f \circ g)^*$ on the nose
and there is no need to use the maps $\alpha_{g, f}$.
In this case the lemma is (even more) trivial. Of course then
one uses that the $\mathit{Mor}(x, y)$ presheaf is
unchanged when passing to an equivalent fibred category which follows from
Lemma \ref{lemma-presheaf-mor-map-fibred-categories}.
\end{remark}
\begin{lemma}
\label{lemma-isom-as-2-fibre-product}
Let $\mathcal{C}$ be a category.
Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category,
see Categories, Section \ref{categories-section-fibred-categories}.
Let $U \in \Ob(\mathcal{C})$ and let $x, y \in \Ob(\mathcal{S}_U)$.
Denote $x, y : \mathcal{C}/U \to \mathcal{S}$ also the corresponding
$1$-morphisms, see
Categories, Lemma \ref{categories-lemma-yoneda-2category}.
Then
\begin{enumerate}
\item the $2$-fibre product
$\mathcal{S} \times_{\mathcal{S} \times \mathcal{S}, (x, y)} \mathcal{C}/U$
is fibred in setoids over $\mathcal{C}/U$, and
\item $\mathit{Isom}(x, y)$ is the presheaf of sets corresponding
to this category fibred in setoids, see
Categories, Lemma \ref{categories-lemma-2-category-fibred-setoids}.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted. Hint: Objects of the $2$-fibre product are
$(a : V \to U, z, a : V \to U, (\alpha, \beta))$ where
$\alpha : z \to a^*x$ and $\beta : z \to a^*y$ are isomorphisms
in $\mathcal{S}_V$. Thus the relationship with $\mathit{Isom}(x, y)$
comes by assigning to such an object the isomorphism
$\beta \circ \alpha^{-1}$.
\end{proof}
\section{Descent data in fibred categories}
\label{section-descent-data}
\noindent
In this section we define the notion of a descent datum
in the abstract setting of a fibred category. Before we
do so we point out that this is completely analogous to
descent data for quasi-coherent sheaves
(Descent, Section \ref{descent-section-equivalence})
and descent data for schemes over schemes
(Descent, Section \ref{descent-section-descent-datum}).
\medskip\noindent
We will use the convention where the projection maps
$\text{pr}_i : X \times \ldots \times X \to X$
are labeled starting with $i = 0$. Hence we have
$\text{pr}_0, \text{pr}_1 : X \times X \to X$,
$\text{pr}_0, \text{pr}_1, \text{pr}_2 : X \times X \times X \to X$,
etc.
\begin{definition}
\label{definition-descent-data}
Let $\mathcal{C}$ be a category.
Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category.
Make a choice of pullbacks as in Categories,
Definition \ref{categories-definition-pullback-functor-fibred-category}.
Let $\mathcal{U} = \{f_i : U_i \to U\}_{i \in I}$
be a family of morphisms of $\mathcal{C}$. Assume all the fibre products
$U_i \times_U U_j$, and $U_i \times_U U_j \times_U U_k$ exist.
\begin{enumerate}
\item A {\it descent datum $(X_i, \varphi_{ij})$ in $\mathcal{S}$
relative to the family $\{f_i : U_i \to U\}$} is given by an object $X_i$
of $\mathcal{S}_{U_i}$ for each $i \in I$, an isomorphism
$\varphi_{ij} : \text{pr}_0^*X_i \to \text{pr}_1^*X_j$
in $\mathcal{S}_{U_i \times_U U_j}$ for each pair $(i, j) \in I^2$
such that for every triple of indices $(i, j, k) \in I^3$ the
diagram
$$
\xymatrix{
\text{pr}_0^*X_i \ar[rd]_{\text{pr}_{01}^*\varphi_{ij}}
\ar[rr]_{\text{pr}_{02}^*\varphi_{ik}} & &
\text{pr}_2^*X_k \\
& \text{pr}_1^*X_j \ar[ru]_{\text{pr}_{12}^*\varphi_{jk}} &
}
$$
in the category $\mathcal{S}_{U_i \times_U U_j \times_U U_k}$
commutes. This is called the {\it cocycle condition}.
\item A {\it morphism $\psi : (X_i, \varphi_{ij}) \to
(X'_i, \varphi'_{ij})$ of descent data} is given
by a family $\psi = (\psi_i)_{i\in I}$ of morphisms
$\psi_i : X_i \to X'_i$ in $\mathcal{S}_{U_i}$
such that all the diagrams
$$
\xymatrix{
\text{pr}_0^*X_i \ar[r]_{\varphi_{ij}} \ar[d]_{\text{pr}_0^*\psi_i}
& \text{pr}_1^*X_j \ar[d]^{\text{pr}_1^*\psi_j} \\
\text{pr}_0^*X'_i \ar[r]^{\varphi'_{ij}} &
\text{pr}_1^*X'_j \\
}
$$
in the categories $\mathcal{S}_{U_i \times_U U_j}$ commute.
\item The category of descent data relative to
$\mathcal{U}$ is denoted $DD(\mathcal{U})$.
\end{enumerate}
\end{definition}
\noindent
The fibre products $U_i \times_U U_j$ and $U_i \times_U U_j \times_U U_k$
will exist if each of the morphisms $f_i : U_i \to U$ is {\it representable},
see Categories, Definition \ref{categories-definition-representable-morphism}.
Recall that in a site one of the conditions for a covering $\{U_i \to U\}$ is
that each of the morphisms is representable, see
Sites, Definition \ref{sites-definition-site} part (3).
In fact the main interest in the definition above is where $\mathcal{C}$
is a site and $\{U_i \to U\}$ is a covering of $\mathcal{C}$. However,
a descent datum is just an abstract gadget that can be defined as above.
This is useful: for example, given a fibred category over $\mathcal{C}$
one can look at the collection of families with respect to which descent data
are effective, and try to use these as the family of coverings for a site.
\begin{remarks}
\label{remarks-definition-descent-datum}
Two remarks on Definition \ref{definition-descent-data} are in order.
Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category.
Let $\{f_i : U_i \to U\}_{i \in I}$, and $(X_i, \varphi_{ij})$
be as in Definition \ref{definition-descent-data}.
\begin{enumerate}
\item There is a diagonal morphism $\Delta : U_i \to U_i \times_U U_i$.
We can pull back $\varphi_{ii}$ via this morphism to get an automorphism
$\Delta^\ast \varphi_{ii} \in \text{Aut}_{U_i}(x_i)$.
On pulling back the cocycle condition for the triple $(i, i, i)$
by $\Delta_{123} : U_i \to U_i \times_U U_i \times_U U_i$ we deduce that
$\Delta^\ast \varphi_{ii} \circ \Delta^\ast \varphi_{ii} =
\Delta^\ast \varphi_{ii}$; thus $\Delta^\ast \varphi_{ii} =
\text{id}_{x_i}$.
\item There is a morphism
$\Delta_{13}: U_i \times_U U_j \to U_i \times_U U_j \times_U U_i$
and we can pull back the
cocycle condition for the triple $(i, j, i)$ to get the
identity $(\sigma^\ast \varphi_{ji}) \circ \varphi_{ij} =
\text{id}_{\text{pr}_0^\ast x_i}$, where
$\sigma: U_i \times_U U_j \to U_j \times_U U_i$ is the switching morphism.
\end{enumerate}
\end{remarks}
\begin{lemma}
\label{lemma-pullback}
(Pullback of descent data.)
Let $\mathcal{C}$ be a category.
Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category.
Make a choice pullbacks as in Categories,
Definition \ref{categories-definition-pullback-functor-fibred-category}.
Let $\mathcal{U} = \{f_i : U_i \to U\}_{i \in I}$, and
$\mathcal{V} = \{V_j \to V\}_{j \in J}$
be a families of morphisms of $\mathcal{C}$ with fixed target.
Assume all the fibre products
$U_i \times_U U_{i'}$, $U_i \times_U U_{i'} \times_U U_{i''}$,
$V_j \times_V V_{j'}$, and $V_j \times_V V_{j'} \times_V V_{j''}$ exist.
Let $\alpha : I \to J$, $h : U \to V$ and
$g_i : U_i \to V_{\alpha(i)}$ be a morphism of families
of maps with fixed target, see
Sites, Definition \ref{sites-definition-morphism-coverings}.
\begin{enumerate}
\item Let $(Y_j, \varphi_{jj'})$ be a descent datum relative to the
family $\{V_j \to V\}$. The system
$$
\left(
g_i^*Y_{\alpha(i)},
(g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')}
\right)
$$
is a descent datum relative to $\mathcal{U}$.
\item This construction defines a functor between descent data relative
to $\mathcal{V}$ and descent data relative to $\mathcal{U}$.
\item Given a second $\alpha' : I \to J$, $h' : U \to V$ and
$g'_i : U_i \to V_{\alpha'(i)}$ morphism of families
of maps with fixed target, then if $h = h'$ the two resulting functors
between descent data are canonically isomorphic.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}
\label{definition-pullback-functor}
With $\mathcal{U} = \{U_i \to U\}_{i \in I}$,
$\mathcal{V} = \{V_j \to V\}_{j \in J}$,
$\alpha : I \to J$, $h : U \to V$,
and $g_i : U_i \to V_{\alpha(i)}$ as in Lemma \ref{lemma-pullback}
the functor
$$
(Y_j, \varphi_{jj'}) \longmapsto
(g_i^*Y_{\alpha(i)}, (g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')})
$$
constructed in that lemma
is called the {\it pullback functor} on descent data.
\end{definition}
\noindent
Given $h : U \to V$, if there exists a morphism
$\tilde h : \mathcal{U} \to \mathcal{V}$ covering $h$
then $\tilde h^*$ is independent of the choice of
$\tilde h$ as we saw in Lemma \ref{lemma-pullback}.
Hence we will sometimes simply write $h^*$ to indicate
the pullback functor.
\begin{definition}
\label{definition-effective-descent-datum}
Let $\mathcal{C}$ be a category.
Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category.
Make a choice of pullbacks as in Categories,
Definition \ref{categories-definition-pullback-functor-fibred-category}.
Let $\mathcal{U} = \{f_i : U_i \to U\}_{i \in I}$ be a family of morphisms
with target $U$. Assume all the fibre products
$U_i \times_U U_j$ and $U_i \times_U U_j \times_U U_k$ exist.
\begin{enumerate}
\item Given an object $X$ of $\mathcal{S}_U$ the {\it trivial descent datum}
is the descent datum $(X, \text{id}_X)$ with respect to the family
$\{\text{id}_U : U \to U\}$.
\item Given an object $X$ of $\mathcal{S}_U$
we have a {\it canonical descent datum} on the family of
objects $f_i^*X$ by pulling back the trivial
descent datum $(X, \text{id}_X)$ via the
obvious map $\{f_i : U_i \to U\} \to \{\text{id}_U : U \to U\}$.
We denote this descent datum $(f_i^*X, can)$.
\item A descent datum $(X_i, \varphi_{ij})$
relative to $\{f_i : U_i \to U\}$ is called {\it effective}
if there exists an object $X$ of $\mathcal{S}_U$ such that
$(X_i, \varphi_{ij})$ is isomorphic to $(f_i^*X, can)$.
\end{enumerate}
\end{definition}
\noindent
Note that the rule that associates to $X \in \mathcal{S}_U$ its
canonical descent datum relative to $\mathcal{U}$ defines a
functor
$$
\mathcal{S}_U \longrightarrow DD(\mathcal{U}).
$$
A descent datum is effective if and only if it is in the essential
image of this functor.
Let us make explicit the canonical descent datum as follows.
\begin{lemma}
\label{lemma-trivial-cocycle}
In the situation of
Definition \ref{definition-effective-descent-datum} part (2) the maps
$can_{ij} : \text{pr}_0^*f_i^*X \to \text{pr}_1^*f_j^*X$ are equal to
$(\alpha_{\text{pr}_1, f_j})_X \circ (\alpha_{\text{pr}_0, f_i})_X^{-1}$
where $\alpha_{\cdot, \cdot}$ is as in
Categories, Lemma \ref{categories-lemma-fibred}
and where we
use the equality $f_i \circ \text{pr}_0 = f_j \circ \text{pr}_1$
as maps $U_i \times_U U_j \to U$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Stacks}
\label{section-definition}
\noindent
Here is the definition of a stack. It mixes the notion of a fibred
category with the notion of descent.
\begin{definition}
\label{definition-stack}
Let $\mathcal{C}$ be a site. A {\it stack} over $\mathcal{C}$
is a category $p : \mathcal{S} \to \mathcal{C}$ over $\mathcal{C}$ which
satisfies the following conditions:
\begin{enumerate}
\item $p : \mathcal{S} \to \mathcal{C}$ is a fibred category, see
Categories, Definition \ref{categories-definition-fibred-category},
\item for any $U \in \Ob(\mathcal{C})$ and any $x, y \in \mathcal{S}_U$
the presheaf $\mathit{Mor}(x, y)$ (see
Definition \ref{definition-mor-presheaf}) is a sheaf on
the site $\mathcal{C}/U$, and
\item for any covering $\mathcal{U} = \{f_i : U_i \to U\}_{i \in I}$
of the site $\mathcal{C}$, any descent datum in $\mathcal{S}$
relative to $\mathcal{U}$ is effective.
\end{enumerate}
\end{definition}
\noindent
We find the formulation above the most convenient way to think about
a stack. Namely, given a category over $\mathcal{C}$ in order to verify
that it is a stack you proceed to check properties (1), (2) and
(3) in that order. Certainly properties (2) and (3) do not make sense
if the category isn't fibred. Without (2) we cannot prove that the
descent in (3) is unique up to unique isomorphism and functorial.
\medskip\noindent
The following lemma provides an alternative definition.
\begin{lemma}
\label{lemma-stack-equivalences}
Let $\mathcal{C}$ be a site.
Let $p : \mathcal{S} \to \mathcal{C}$ be a fibred category
over $\mathcal{C}$. The following are equivalent
\begin{enumerate}
\item $\mathcal{S}$ is a stack over $\mathcal{C}$, and
\item for any covering $\mathcal{U} = \{f_i : U_i \to U\}_{i \in I}$
of the site $\mathcal{C}$ the functor
$$
\mathcal{S}_U \longrightarrow DD(\mathcal{U})
$$
which associates to an
object its canonical descent datum is an equivalence.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-substack}
Let $p : \mathcal{S} \to \mathcal{C}$ be a stack over the site $\mathcal{C}$.
Let $\mathcal{S}'$ be a subcategory of $\mathcal{S}$.
Assume
\begin{enumerate}
\item if $\varphi : y \to x$ is a strongly cartesian
morphism of $\mathcal{S}$ and
$x$ is an object of $\mathcal{S}'$, then $y$ is isomorphic to an
object of $\mathcal{S}'$,
\item $\mathcal{S}'$ is a full subcategory of $\mathcal{S}$, and
\item if $\{f_i : U_i \to U\}$ is a covering of $\mathcal{C}$,
and $x$ an object of $\mathcal{S}$ over $U$ such that $f_i^*x$
is isomorphic to an object of $\mathcal{S}'$ for each $i$,
then $x$ is isomorphic to an object of $\mathcal{S}'$.
\end{enumerate}
Then $\mathcal{S}' \to \mathcal{C}$ is a stack.
\end{lemma}
\begin{proof}
Omitted. Hints:
The first condition guarantees that $\mathcal{S}'$ is a fibred category.
The second condition guarantees that the $\mathit{Isom}$-presheaves
of $\mathcal{S}'$ are sheaves (as they are identical to their counter parts
in $\mathcal{S}$). The third condition guarantees that the descent condition
holds in $\mathcal{S}'$ as we can first descend in $\mathcal{S}$ and
then (3) implies the resulting object is isomorphic to an object of
$\mathcal{S}'$.
\end{proof}
\begin{lemma}
\label{lemma-stack-equivalent}
Let $\mathcal{C}$ be a site.
Let $\mathcal{S}_1$, $\mathcal{S}_2$ be categories over $\mathcal{C}$.
Suppose that $\mathcal{S}_1$ and $\mathcal{S}_2$ are equivalent
as categories over $\mathcal{C}$.
Then $\mathcal{S}_1$ is a stack over $\mathcal{C}$ if and only if
$\mathcal{S}_2$ is a stack over $\mathcal{C}$.
\end{lemma}
\begin{proof}
Let $F : \mathcal{S}_1 \to \mathcal{S}_2$,
$G : \mathcal{S}_2 \to \mathcal{S}_1$ be functors over $\mathcal{C}$, and let
$i : F \circ G \to \text{id}_{\mathcal{S}_2}$,
$j : G \circ F \to \text{id}_{\mathcal{S}_1}$ be isomorphisms of
functors over $\mathcal{C}$. By
Categories, Lemma \ref{categories-lemma-fibred-equivalent}
we see that $\mathcal{S}_1$ is fibred if and only if $\mathcal{S}_2$
is fibred over $\mathcal{C}$. Hence we may assume that both
$\mathcal{S}_1$ and $\mathcal{S}_2$ are fibred. Moreover, the proof of
Categories, Lemma \ref{categories-lemma-fibred-equivalent}
shows that $F$ and $G$ map strongly cartesian morphisms to strongly
cartesian morphisms, i.e., $F$ and $G$ are $1$-morphisms of fibred
categories over $\mathcal{C}$. This means that given
$U \in \Ob(\mathcal{C})$, and $x, y \in \mathcal{S}_{1, U}$ then
the presheaves
$$
\mathit{Mor}_{\mathcal{S}_1}(x, y),
\mathit{Mor}_{\mathcal{S}_1}(F(x), F(y)) :
(\mathcal{C}/U)^{opp} \longrightarrow \textit{Sets}.
$$
are identified, see
Lemma \ref{lemma-presheaf-mor-map-fibred-categories}. Hence
the first is a sheaf if and only if the second is a sheaf.
Finally, we have to show that if every descent datum in $\mathcal{S}_1$
is effective, then so is every descent datum in $\mathcal{S}_2$.
To do this, let $(X_i, \varphi_{ii'})$ be a descent datum
in $\mathcal{S}_2$ relative the covering $\{U_i \to U\}$ of the site
$\mathcal{C}$. Then $(G(X_i), G(\varphi_{ii'}))$ is a descent datum
in $\mathcal{S}_1$ relative the covering $\{U_i \to U\}$.
Let $X$ be an object of $\mathcal{S}_{1, U}$ such that the
descent datum $(f_i^*X, can)$ is isomorphic to
$(G(X_i), G(\varphi_{ii'}))$. Then $F(X)$ is an object of $\mathcal{S}_{2, U}$
such that the descent datum $(f_i^*F(X), can)$ is isomorphic to
$(F(G(X_i)), F(G(\varphi_{ii'})))$ which in turn is isomorphic to
the original descent datum $(X_i, \varphi_{ii'})$ using $i$.
\end{proof}
\noindent
The $2$-category of stacks over $\mathcal{C}$
is defined as follows.
\begin{definition}
\label{definition-stacks-over-C}
Let $\mathcal{C}$ be a site.
The {\it $2$-category of stacks over $\mathcal{C}$}
is the sub $2$-category of the $2$-category of fibred categories
over $\mathcal{C}$ (see
Categories, Definition \ref{categories-definition-fibred-categories-over-C})
defined as follows:
\begin{enumerate}
\item Its objects will be stacks $p : \mathcal{S} \to \mathcal{C}$.
\item Its $1$-morphisms $(\mathcal{S}, p) \to (\mathcal{S}', p')$
will be functors $G : \mathcal{S} \to \mathcal{S}'$ such that
$p' \circ G = p$ and such that $G$ maps strongly cartesian
morphisms to strongly cartesian morphisms.
\item Its $2$-morphisms $t : G \to H$ for
$G, H : (\mathcal{S}, p) \to (\mathcal{S}', p')$
will be morphisms of functors
such that $p'(t_x) = \text{id}_{p(x)}$
for all $x \in \Ob(\mathcal{S})$.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-2-product-stacks}
Let $\mathcal{C}$ be a site.
The $(2, 1)$-category of stacks over $\mathcal{C}$
has 2-fibre products, and they are described as in
Categories, Lemma \ref{categories-lemma-2-product-categories-over-C}.
\end{lemma}
\begin{proof}
Let $f : \mathcal{X} \to \mathcal{S}$ and
$g : \mathcal{Y} \to \mathcal{S}$ be
$1$-morphisms of stacks over $\mathcal{C}$
as defined above. The category
$\mathcal{X} \times_\mathcal{S} \mathcal{Y}$
described in
Categories, Lemma \ref{categories-lemma-2-product-categories-over-C} is a
fibred category according to
Categories, Lemma \ref{categories-lemma-2-product-fibred-categories-over-C}.
(This is where we use that $f$ and $g$ preserve strongly cartesian
morphisms.) It remains to show that the morphism presheaves are sheaves
and that descent relative to coverings of $\mathcal{C}$ is effective.
\medskip\noindent
Recall that an object of $\mathcal{X} \times_\mathcal{S} \mathcal{Y}$
is given by a quadruple $(U, x, y, \phi)$.
It lies over the object
$U$ of $\mathcal{C}$. Next, let $(U, x', y', \phi')$ be second
object lying over $U$.
Recall that $\phi : f(x) \to g(y)$, and $\phi' : f(x') \to g(y')$
are isomorphisms in the category $\mathcal{S}_U$. Let us
use these isomorphisms to identify $z = f(x) = g(y)$ and
$z' = f(x') = g(y')$. With this identifications
it is clear that
$$
\mathit{Mor}((U, x, y, \phi), (U, x', y', \phi'))
=
\mathit{Mor}(x, x')
\times_{\mathit{Mor}(z, z')}
\mathit{Mor}(y, y')
$$
as presheaves. However, as the fibred product in the category of
presheaves preserves sheaves (Sites, Lemma \ref{sites-lemma-limit-sheaf})
we see that this is a sheaf.
\medskip\noindent
Let $\mathcal{U} = \{f_i : U_i \to U\}_{i \in I}$ be a covering of the site
$\mathcal{C}$. Let $(X_i, \chi_{ij})$ be a descent datum
in $\mathcal{X} \times_\mathcal{S} \mathcal{Y}$ relative to $\mathcal{U}$.
Write $X_i = (U_i, x_i, y_i, \phi_i)$ as above. Write
$\chi_{ij} = (\varphi_{ij}, \psi_{ij})$ as in the definition of
the category $\mathcal{X} \times_\mathcal{S} \mathcal{Y}$ (see
Categories, Lemma \ref{categories-lemma-2-product-categories-over-C}).
It is clear that $(x_i, \varphi_{ij})$ is a descent datum in
$\mathcal{X}$ and that $(y_i, \psi_{ij})$ is a descent datum in
$\mathcal{Y}$. Since $\mathcal{X}$ and $\mathcal{Y}$ are stacks these
descent data are effective. Thus we get
$x \in \Ob(\mathcal{X}_U)$, and $y \in \Ob(\mathcal{Y}_U)$
with $x_i = x|_{U_i}$, and $y_i = y|_{U_i}$ compatibly with descent data.
Set $z = f(x)$ and $z' = g(y)$ which are both objects of $\mathcal{S}_U$.
The morphisms $\phi_i$ are elements of
$\mathit{Isom}(z, z')(U_i)$ with the property that
$\phi_i|_{U_i \times_U U_j} = \phi_j|_{U_i \times_U U_j}$.
Hence by the sheaf property of $\mathit{Isom}(z, z')$
we obtain an isomorphism $\phi : z = f(x) \to z' = g(y)$.
We omit the verification that the canonical descent datum associated to
the object $(U, x, y, \phi)$ of
$(\mathcal{X} \times_\mathcal{S} \mathcal{Y})_U$ is isomorphic
to the descent datum we started with.
\end{proof}
\begin{lemma}
\label{lemma-characterize-ff}
Let $\mathcal{C}$ be a site.
Let $\mathcal{S}_1$, $\mathcal{S}_2$ be stacks over $\mathcal{C}$.
Let $F : \mathcal{S}_1 \to \mathcal{S}_2$ be a $1$-morphism.
Then the following are equivalent
\begin{enumerate}
\item $F$ is fully faithful,
\item for every $U \in \Ob(\mathcal{C})$ and for every
$x, y \in \Ob(\mathcal{S}_{1, U})$ the map
$$
F :
\mathit{Mor}_{\mathcal{S}_1}(x, y)
\longrightarrow
\mathit{Mor}_{\mathcal{S}_2}(x, y)
$$
is an isomorphism of sheaves on $\mathcal{C}/U$.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-characterize-essentially-surjective-when-ff}
Let $\mathcal{C}$ be a site.
Let $\mathcal{S}_1$, $\mathcal{S}_2$ be stacks over $\mathcal{C}$.
Let $F : \mathcal{S}_1 \to \mathcal{S}_2$ be a $1$-morphism which is
fully faithful. Then the following are equivalent
\begin{enumerate}
\item $F$ is an equivalence,
\item for every $U \in \Ob(\mathcal{C})$ and for every
$x \in \Ob(\mathcal{S}_{2, U})$ there exists a covering
$\{f_i : U_i \to U\}$ such that $f_i^*x$ is in the essential image
of the functor $F : \mathcal{S}_{1, U_i} \to \mathcal{S}_{2, U_i}$.
\end{enumerate}
\end{lemma}
\begin{proof}
The implication (1) $\Rightarrow$ (2) is immediate.
To see that (2) implies (1) we have to show that every
$x$ as in (2) is in the essential image of the functor $F$.
To do this choose a covering as in (2),
$x_i \in \Ob(\mathcal{S}_{1, U_i})$, and
isomorphisms $\varphi_i : F(x_i) \to f_i^*x$. Then we get a descent
datum for $\mathcal{S}_1$ relative to $\{f_i : U_i \to U\}$
by taking
$$
\varphi_{ij} :
x_i|_{U_i \times_U U_j}
\longrightarrow
x_j|_{U_i \times_U U_j}
$$
the arrow such that $F(\varphi_{ij}) = \varphi_j^{-1} \circ \varphi_i$.
This descent datum is effective by the axioms of a stack, and hence
we obtain an object $x_1$ of $\mathcal{S}_1$ over $U$. We omit the
verification that $F(x_1)$ is isomorphic to $x$ over $U$.
\end{proof}
\begin{remark}
\label{remark-stack-make-small}
(Cutting down a ``big'' stack to get a stack.)
Let $\mathcal{C}$ be a site. Suppose that $p : \mathcal{S} \to \mathcal{C}$
is functor from a ``big'' category to $\mathcal{C}$, i.e., suppose
that the collection of objects of $\mathcal{S}$ forms a proper class.
Finally, suppose that $p : \mathcal{S} \to \mathcal{C}$ satisfies
conditions (1), (2), (3) of
Definition \ref{definition-stack}.
In general there is no way to replace $p : \mathcal{S} \to \mathcal{C}$
by a equivalent category such that we obtain a stack. The reason is that
it can happen that a fibre categories $\mathcal{S}_U$ may have a proper
class of isomorphism classes of objects.
On the other hand, suppose that
\begin{enumerate}
\item[(4)] for every $U \in \Ob(\mathcal{C})$ there exists a set
$S_U \subset \Ob(\mathcal{S}_U)$ such that every object of
$\mathcal{S}_U$ is isomorphic in $\mathcal{S}_U$ to an element of $S_U$.
\end{enumerate}
In this case we can find a full subcategory $\mathcal{S}_{small}$
of $\mathcal{S}$ such that, setting $p_{small} = p|_{\mathcal{S}_{small}}$,
we have
\begin{enumerate}
\item[(a)] the functor $p_{small} : \mathcal{S}_{small} \to \mathcal{C}$
defines a stack, and
\item[(b)] the inclusion $\mathcal{S}_{small} \to \mathcal{S}$
is fully faithful and essentially surjective.
\end{enumerate}
(Hint: For every $U \in \Ob(\mathcal{C})$
let $\alpha(U)$ denote the smallest ordinal such that
$\Ob(\mathcal{S}_U) \cap V_{\alpha(U)}$ surjects onto the set
of isomorphism classes of $\mathcal{S}_U$, and set
$\alpha = \sup_{U \in \Ob(\mathcal{C})} \alpha(U)$.
Then take
$\Ob(\mathcal{S}_{small}) = \Ob(\mathcal{S}) \cap V_\alpha$.
For notation used see Sets, Section \ref{sets-section-sets-hierarchy}.)
\end{remark}
\section{Stacks in groupoids}
\label{section-stacks-in-groupoids}
\noindent
Among stacks those which are fibred in groupoids are somewhat easier
to comprehend. We redefine them as follows.
\begin{definition}
\label{definition-stack-in-groupoids}
A {\it stack in groupoids} over a site $\mathcal{C}$ is a
category $p : \mathcal{S} \to \mathcal{C}$ over $\mathcal{C}$
such that
\begin{enumerate}
\item $p : \mathcal{S} \to \mathcal{C}$ is fibred
in groupoids over $\mathcal{C}$ (see
Categories, Definition \ref{categories-definition-fibred-groupoids}),
\item for all $U \in \Ob(\mathcal{C})$,
for all $x, y\in \Ob(\mathcal{S}_U)$ the presheaf
$\mathit{Isom}(x, y)$ is a sheaf on the site $\mathcal{C}/U$, and
\item for all coverings $\mathcal{U} = \{U_i \to U\}$ in $\mathcal{C}$,
all descent data $(x_i, \phi_{ij})$ for $\mathcal{U}$ are effective.
\end{enumerate}
\end{definition}
\noindent
Usually the hardest part to check is the third condition.
Here is the lemma comparing this with the notion of a stack.
\begin{lemma}
\label{lemma-stack-in-groupoids-stack}
Let $\mathcal{C}$ be a site.
Let $p : \mathcal{S} \to \mathcal{C}$ be a category over $\mathcal{C}$.
The following are equivalent
\begin{enumerate}
\item $\mathcal{S}$ is a stack in groupoids over $\mathcal{C}$,
\item $\mathcal{S}$ is a stack over $\mathcal{C}$ and all
fibre categories are groupoids, and
\item $\mathcal{S}$ is fibred in groupoids over $\mathcal{C}$
and is a stack over $\mathcal{C}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted, but see Categories, Lemma \ref{categories-lemma-fibred-groupoids}.
\end{proof}
\begin{lemma}
\label{lemma-stack-gives-stack-groupoids}
Let $\mathcal{C}$ be a site.
Let $p : \mathcal{S} \to \mathcal{C}$ be a stack.
Let $p' : \mathcal{S}' \to \mathcal{C}$
be the category fibred in groupoids associated to $\mathcal{S}$
constructed in
Categories, Lemma \ref{categories-lemma-fibred-gives-fibred-groupoids}.
Then $p' : \mathcal{S}' \to \mathcal{C}$ is a stack in groupoids.
\end{lemma}
\begin{proof}
Recall that the morphisms in $\mathcal{S}'$ are exactly the
strongly cartesian morphisms of $\mathcal{S}$, and that any isomorphism of
$\mathcal{S}$ is such a morphism. Hence descent data in $\mathcal{S}'$
are exactly the same thing as descent data in $\mathcal{S}$. Now apply
Lemma \ref{lemma-stack-equivalences}. Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-stack-in-groupoids-equivalent}
Let $\mathcal{C}$ be a site.
Let $\mathcal{S}_1$, $\mathcal{S}_2$ be categories over $\mathcal{C}$.
Suppose that $\mathcal{S}_1$ and $\mathcal{S}_2$ are equivalent
as categories over $\mathcal{C}$.
Then $\mathcal{S}_1$ is a stack in groupoids over $\mathcal{C}$ if and only if
$\mathcal{S}_2$ is a stack in groupoids over $\mathcal{C}$.
\end{lemma}
\begin{proof}
Follows by combining
Lemmas \ref{lemma-stack-in-groupoids-stack} and \ref{lemma-stack-equivalent}.
\end{proof}
\noindent
The $2$-category of stacks in groupoids over $\mathcal{C}$
is defined as follows.
\begin{definition}
\label{definition-stacks-in-groupoids-over-C}
Let $\mathcal{C}$ be a site.
The {\it $2$-category of stacks in groupoids over $\mathcal{C}$}
is the sub $2$-category of the $2$-category of stacks
over $\mathcal{C}$ (see Definition \ref{definition-stacks-over-C})
defined as follows:
\begin{enumerate}
\item Its objects will be stacks in groupoids
$p : \mathcal{S} \to \mathcal{C}$.
\item Its $1$-morphisms $(\mathcal{S}, p) \to (\mathcal{S}', p')$
will be functors $G : \mathcal{S} \to \mathcal{S}'$ such that
$p' \circ G = p$. (Since every morphism is strongly cartesian
every functor preserves them.)
\item Its $2$-morphisms $t : G \to H$ for
$G, H : (\mathcal{S}, p) \to (\mathcal{S}', p')$
will be morphisms of functors
such that $p'(t_x) = \text{id}_{p(x)}$
for all $x \in \Ob(\mathcal{S})$.
\end{enumerate}
\end{definition}
\noindent
Note that any $2$-morphism is automatically an isomorphism, so
that in fact the $2$-category of stacks in groupoids over $\mathcal{C}$
is a (strict) $(2, 1)$-category.
\begin{lemma}
\label{lemma-2-product-stacks-in-groupoids}
Let $\mathcal{C}$ be a category.
The $2$-category of stacks in groupoids over $\mathcal{C}$
has 2-fibre products, and they are described as in
Categories, Lemma \ref{categories-lemma-2-product-categories-over-C}.
\end{lemma}
\begin{proof}
This is clear from
Categories, Lemma \ref{categories-lemma-2-product-fibred-categories}
and Lemmas \ref{lemma-stack-in-groupoids-stack}
and \ref{lemma-2-product-stacks}.
\end{proof}
\section{Stacks in setoids}
\label{section-stacks-in-setoids}
\noindent
This is just a brief section saying that a stack in sets
is the same thing as a sheaf of sets. Please consult
Categories, Section \ref{categories-section-fibred-in-setoids}
for notation.
\begin{definition}
\label{definition-stack-in-sets}
Let $\mathcal{C}$ be a site.
\begin{enumerate}
\item A {\it stack in setoids} over $\mathcal{C}$
is a stack over $\mathcal{C}$ all of whose fibre categories are
setoids.
\item A {\it stack in sets}, or a {\it stack in discrete categories}
is a stack over $\mathcal{C}$ all of whose fibre categories are discrete.
\end{enumerate}
\end{definition}
\noindent
From the discussion in
Section \ref{section-stacks-in-groupoids}
this is the same thing as a stack in groupoids whose fibre categories
are setoids (resp.\ discrete). Moreover, it is also the same thing
as a category fibred in setoids (resp.\ sets) which is a stack.
\begin{lemma}
\label{lemma-when-stack-in-sets}
Let $\mathcal{C}$ be a site. Under the equivalence
$$
\left\{
\begin{matrix}
\text{the category of presheaves}\\
\text{of sets over }\mathcal{C}
\end{matrix}
\right\}
\leftrightarrow
\left\{