forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quot.tex
2358 lines (2164 loc) · 93 KB
/
quot.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Quot and Hilbert Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
The purpose of this chapter is to write about Quot and Hilbert functors
and to prove that these are algebraic spaces provided certain technical
conditions are satisfied. In this chapter we will discuss this in the
setting of algebraic space. A reference is Grothendieck's lectures, see
\cite{Gr-I},
\cite{Gr-II},
\cite{Gr-III},
\cite{Gr-IV},
\cite{Gr-V}, and
\cite{Gr-VI}.
Another reference is the paper \cite{olsson-starr}; this paper discusses
the more general case of Quot and Hilbert spaces associated to a morphism
of algebraic stacks which we will discuss in another chapter, see
(insert future reference here).
\medskip\noindent
In the case of Hilbert spaces there is a more general notion of
``Hilbert stacks'' which we will discuss in a separate chapter, see
(insert future reference here).
\medskip\noindent
We have intentionally placed this chapter, as well as the chapters
``Examples of Stacks'', ``Sheaves on Algebraic Stacks'',
``Criteria for Representability'', and ``Artin's Axioms'' before the
general development of the theory of algebraic stacks. The reason
for this is that starting with the next chapter (see
Properties of Stacks, Section \ref{stacks-properties-section-conventions})
we will no longer distinguish between a scheme and the algebraic stack
it gives rise to. Thus our language will become more flexible and
easier for a human to parse, but also less precise. These first few
chapters, including the initial chapter ``Algebraic Stacks'', lay the
groundwork that later allow us to ignore some of the very technical
distinctions between different ways of thinking about algebraic stacks.
But especially in the chapters ``Artin's Axioms'' and
``Criteria of Representability'' we need
to be very precise about what objects exactly we are working with, as
we are trying to show that certain constructions produce algebraic stacks or
algebraic spaces.
\medskip\noindent
Unfortunately, this means that some of the notation, conventions and
terminology is awkward and may seem backwards to the more experienced
reader. We hope the reader will forgive us!
\section{Conventions}
\label{section-conventions}
\noindent
The standing assumption is that all schemes are contained in
a big fppf site $\Sch_{fppf}$. And all rings $A$ considered
have the property that $\Spec(A)$ is (isomorphic) to an
object of this big site.
\medskip\noindent
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
In this chapter and the following we will write $X \times_S X$
for the product of $X$ with itself (in the category of algebraic
spaces over $S$), instead of $X \times X$.
\section{An auxiliary functor}
\label{section-F-zero}
\noindent
This section is the analogue of
More on Flatness, Section \ref{flat-section-flattening-functors}.
\begin{situation}
\label{situation-iso}
Let $S$ be a scheme.
Let $f : X \to B$ be a morphism of algebraic spaces over $S$.
Let $u : \mathcal{F} \to \mathcal{G}$ be a homomorphism of
quasi-coherent $\mathcal{O}_X$-modules. For any scheme $T$ over
$B$ we will denote $u_T : \mathcal{F}_T \to \mathcal{G}_T$ the
base change of $u$ to $T$, in other words, $u_T$ is the pullback
of $u$ via the projection morphism $X_T = X \times_B T \to X$.
In this situation we can consider the functor
\begin{equation}
\label{equation-iso}
F_{iso} : (\Sch/B)^{opp} \longrightarrow \textit{Sets}, \quad
T \longrightarrow \left\{
\begin{matrix}
\{*\} & \text{if }u_T\text{ is an isomorphism}, \\
\emptyset & \text{else.}
\end{matrix}
\right.
\end{equation}
There are variants $F_{inj}$, $F_{surj}$, $F_{zero}$ where we ask that
$u_T$ is injective, surjective, or zero.
\end{situation}
\noindent
In Situation \ref{situation-iso} we sometimes think of the functors
$F_{iso}$, $F_{inj}$, $F_{surj}$, and $F_{zero}$ as functors
$(\Sch/S)^{opp} \to \textit{Sets}$ endowed with a morphism
$F_{iso} \to B$, $F_{inj} \to B$, $F_{surj} \to B$, and $F_{zero} \to B$.
Namely, if $T$ is a scheme over $S$, then an element $h \in F_{iso}(T)$
is just a morphism $h : T \to B$, i.e., an element $h \in B(T)$,
such that the base change of $u$ via $h$ is an isomorphism.
In particular, when we say
that $F_{iso}$ is an algebraic space, we mean that the corresponding
functor $(\Sch/S)^{opp} \to \textit{Sets}$ is an algebraic space.
\begin{lemma}
\label{lemma-iso-sheaf}
In Situation \ref{situation-iso}.
Each of the functors $F_{iso}$, $F_{inj}$, $F_{surj}$, $F_{zero}$
satisfies the sheaf property for the fpqc topology.
\end{lemma}
\begin{proof}
Let $\{T_i \to T\}_{i \in I}$ be an fpqc covering of schemes over $B$.
Set $X_i = X_{T_i} = X \times_S T_i$ and $u_i = u_{T_i}$.
Note that $\{X_i \to X_T\}_{i \in I}$ is an fpqc covering of $X_T$, see
Topologies on Spaces, Lemma \ref{spaces-topologies-lemma-fpqc}.
In particular, for every $x \in |X_T|$ there exists an $i \in I$
and an $x_i \in |X_i|$ mapping to $x$. Since
$\mathcal{O}_{X_T, \overline{x}} \to \mathcal{O}_{X_i, \overline{x_i}}$
is flat, hence faithfully flat (see
Morphisms of Spaces, Section \ref{spaces-morphisms-section-flat}).
we conclude that $(u_i)_{x_i}$ is injective, surjective, bijective, or zero
if and only if $(u_T)_x$ is injective, surjective, bijective, or zero.
The lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-iso-go-up}
In Situation \ref{situation-iso} let $X' \to X$ be a flat morphism
of algebraic spaces. Denote $u' : \mathcal{F}' \to \mathcal{G}'$
the pullback of $u$ to $X'$. Denote $F'_{iso}$, $F'_{inj}$, $F'_{surj}$,
$F'_{zero}$ the functors on $\Sch/B$ associated to $u'$.
\begin{enumerate}
\item If $\mathcal{G}$ is of finite type and the image of $|X'| \to |X|$
contains the support of $\mathcal{G}$, then $F_{surj} = F'_{surj}$
and $F_{zero} = F'_{zero}$.
\item If $\mathcal{F}$ is of finite type and the image of $|X'| \to |X|$
contains the support of $\mathcal{F}$, then $F_{inj} = F'_{inj}$
and $F_{zero} = F'_{zero}$.
\item If $\mathcal{F}$ and $\mathcal{G}$ are of finite type and the image of
$|X'| \to |X|$ contains the supports of $\mathcal{F}$ and $\mathcal{G}$,
then $F_{iso} = F'_{iso}$.
\end{enumerate}
\end{lemma}
\begin{proof}
let $v : \mathcal{H} \to \mathcal{E}$ be a map of quasi-coherent
modules on an algebraic space $Y$ and let $\varphi : Y' \to Y$ be a
surjective flat morphism of algebraic spaces, then $v$ is
an isomorphism, injective, surjective, or zero if and only if $\varphi^*v$ is
an isomorphism, injective, surjective, or zero. Namely,
for every $y \in |Y|$ there exists a $y' \in |Y'|$ and the map
of local rings
$\mathcal{O}_{Y, \overline{y}} \to \mathcal{O}_{Y', \overline{y'}}$
is faithfully flat (see
Morphisms of Spaces, Section \ref{spaces-morphisms-section-flat}).
Of course, to check for injectivity or being zero it suffices to look
at the points in the support of $\mathcal{H}$, and to check for
surjectivity it suffices to look at points in the support of $\mathcal{E}$.
Moreover, under the finite type assumptions as in the statement of
the lemma, taking the supports commutes with base change, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-support-finite-type}.
Thus the lemma is clear.
\end{proof}
\noindent
Recall that we've defined the scheme theoretic support of a finite
type quasi-coherent module in Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-scheme-theoretic-support}.
\begin{lemma}
\label{lemma-iso-limits}
In Situation \ref{situation-iso}.
\begin{enumerate}
\item If $\mathcal{G}$ is of finite type and the scheme theoretic support
of $\mathcal{G}$ is quasi-compact over $B$, then $F_{surj}$ is limit
preserving.
\item If $\mathcal{F}$ of finite type and the scheme theoretic support
of $\mathcal{F}$ is quasi-compact over $B$, then
$F_{zero}$ is limit preserving.
\item If $\mathcal{F}$ is of finite type,
$\mathcal{G}$ is of finite presentation, and the
scheme theoretic supports of $\mathcal{F}$ and $\mathcal{G}$ are
quasi-compact over $B$, then $F_{iso}$ is limit preserving.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). Let $i : Z \to X$ be the scheme theoretic support of
$\mathcal{G}$ and think of $\mathcal{G}$ as a finite type quasi-coherent
module on $Z$. We may replace $X$ by $Z$ and $u$ by the map
$i^*\mathcal{F} \to \mathcal{G}$ (details omitted). Hence we may assume
$f$ is quasi-compact and $\mathcal{G}$ of finite type.
Let $T = \lim_{i \in I} T_i$ be a directed limit of affine $B$-schemes
and assume that $u_T$ is surjective.
Set $X_i = X_{T_i} = X \times_S T_i$ and
$u_i = u_{T_i} : \mathcal{F}_i = \mathcal{F}_{T_i}
\to \mathcal{G}_i = \mathcal{G}_{T_i}$.
To prove (1) we have to show that $u_i$ is surjective for some $i$.
Pick $0 \in I$ and replace $I$ by $\{i \mid i \geq 0\}$.
Since $f$ is quasi-compact we see $X_0$ is quasi-compact.
Hence we may choose a surjective \'etale morphism $\varphi_0 : W_0 \to X_0$
where $W_0$ is an affine scheme. Set $W = W_0 \times_{T_0} T$
and $W_i = W_0 \times_{T_0} T_i$ for $i \geq 0$. These
are affine schemes endowed
with a surjective \'etale morphisms $\varphi : W \to X_T$ and
$\varphi_i : W_i \to X_i$. Note that $W = \lim W_i$.
Hence $\varphi^*u_T$ is surjective and it suffices to prove that
$\varphi_i^*u_i$ is surjective for some $i$. Thus we have reduced
the problem to the affine case which is
Algebra, Lemma \ref{algebra-lemma-module-map-property-in-colimit} part (2).
\medskip\noindent
Proof of (2). Assume $\mathcal{F}$ is of finite type with scheme theoretic
support $Z \subset B$ quasi-compact over $B$. Let $T = \lim_{i \in I} T_i$
be a directed limit of affine $B$-schemes and assume that $u_T$ is zero.
Set $X_i = T_i \times_B X$ and denote $u_i : \mathcal{F}_i \to \mathcal{G}_i$
the pullback. Choose $0 \in I$ and replace $I$ by
$\{i \mid i \geq 0\}$. Set $Z_0 = Z \times_X X_0$. By
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-support-finite-type}
the support of $\mathcal{F}_i$ is $|Z_0|$. Since $|Z_0|$ is quasi-compact
we can find an affine scheme $W_0$ and an \'etale morphism $W_0 \to X_0$
such that $|Z_0| \subset \text{Im}(|W_0| \to |X_0|)$.
Set $W = W_0 \times_{T_0} T$ and $W_i = W_0 \times_{T_0} T_i$ for $i \geq 0$.
These are affine schemes endowed
with \'etale morphisms $\varphi : W \to X_T$ and
$\varphi_i : W_i \to X_i$. Note that $W = \lim W_i$
and that the support of $\mathcal{F}_T$ and $\mathcal{F}_i$
is contained in the image of $|W| \to |X_T|$ and $|W_i| \to |X_i|$.
Now $\varphi^*u_T$ is injective and it suffices to prove that
$\varphi_i^*u_i$ is injective for some $i$.
Thus we have reduced the problem to the affine case which is
Algebra, Lemma \ref{algebra-lemma-module-map-property-in-colimit} part (1).
\medskip\noindent
Proof of (3). This can be proven in exactly the same manner as in the
previous two paragraphs using
Algebra, Lemma \ref{algebra-lemma-module-map-property-in-colimit} part (3).
We can also deduce it from (1) and (2) as follows.
Let $T = \lim_{i \in I} T_i$ be a directed limit of affine $B$-schemes
and assume that $u_T$ is an isomorphism. By part (1) there exists
an $0 \in I$ such that $u_{T_0}$ is surjective. Set
$\mathcal{K} = \text{Ker}(u_{T_0})$ and consider the map of quasi-coherent
modules $v : \mathcal{K} \to \mathcal{F}_{T_0}$. For $i \geq 0$ the base
change $v_{T_i}$ is zero if and only if $u_i$ is an isomorphism. Moreover,
$v_T$ is zero. Since $\mathcal{G}_{T_0}$
is of finite presentation, $\mathcal{F}_{T_0}$ is of finite type, and
$u_{T_0}$ is surjective we conclude that $\mathcal{K}$ is of finite type
(Modules on Sites, Lemma
\ref{sites-modules-lemma-kernel-surjection-finite-onto-finite-presentation}).
It is clear that the support of $\mathcal{K}$ is contained in the
support of $\mathcal{F}_{T_0}$ which is quasi-compact over $T_0$.
Hence we can apply part (2) to see that $v_{T_i}$ is zero for some $i$.
\end{proof}
\begin{lemma}
\label{lemma-F-zero-somewhat-closed}
Let $S = \Spec(R)$ be an affine scheme. Let $X$ be an algebraic space over
$S$. Let $u : \mathcal{F} \to \mathcal{G}$ be a map of quasi-coherent
$\mathcal{O}_X$-modules. Assume $\mathcal{G}$ flat over $S$. Let $T \to S$
be a quasi-compact morphism of schemes such that the base change $u_T$ is
zero. Then exists a closed subscheme $Z \subset S$ such that
(a) $T \to S$ factors through $Z$ and (b) the base change $u_Z$ is zero.
If $\mathcal{F}$ is a finite type $\mathcal{O}_X$-module and
the scheme theoretic support of $\mathcal{F}$ is quasi-compact,
then we can take $Z \to S$ of finite presentation.
\end{lemma}
\begin{proof}
Let $U \to X$ be a surjective \'etale morphism of algebraic spaces
where $U = \coprod U_i$ is a disjoint union of affine schemes (see
Properties of Spaces, Lemma
\ref{spaces-properties-lemma-cover-by-union-affines}).
By Lemma \ref{lemma-iso-go-up} we see that we may
replace $X$ by $U$. In other words, we may assume that $X = \coprod X_i$
is a disjoint union of affine schemes $X_i$. Suppose that we can prove
the lemma for $u_i = u|_{X_i}$. Then we find a closed subscheme
$Z_i \subset S$ such that $T \to S$ factors through $Z_i$ and
$u_{i, Z_i}$ is zero. If
$Z_i = \Spec(R/I_i) \subset \Spec(R) = S$, then taking
$Z = \Spec(R/\sum I_i)$ works. Thus we may assume that
$X = \Spec(A)$ is affine.
\medskip\noindent
Choose a finite affine open covering $T = T_1 \cup \ldots \cup T_m$.
It is clear that we may replace $T$ by $\coprod_{j = 1, \ldots, m} T_j$.
Hence we may assume $T$ is affine. Say $T = \Spec(R')$.
Let $u : M \to N$ be the homomorphisms of $A$-modules
corresponding to $u : \mathcal{F} \to \mathcal{G}$.
Then $N$ is a flat $R$-module as $\mathcal{G}$ is flat over $S$.
The assumption of the lemma means that the composition
$$
M \otimes_R R' \to N \otimes_R R'
$$
is zero. Let $z \in M$. By Lazard's theorem
(Algebra, Theorem \ref{algebra-theorem-lazard}) and the fact
that $\otimes$ commutes with colimits we can find free $R$-module
$F_z$, an element $\tilde z \in F_z$, and a map $F_z \to N$ such that
$u(z)$ is the image of $\tilde z$ and $\tilde z$ maps to zero in
$F_z \otimes_R R'$. Choose a basis $\{e_{z, \alpha}\}$ of $F_z$ and write
$\tilde z = \sum f_{z, \alpha} e_{z, \alpha}$ with $f_{z, \alpha} \in R$.
Let $I \subset R$ be the ideal generated by the elements $f_{z, \alpha}$
with $z$ ranging over all elements of $M$.
By construction $I$ maps to zero in $R'$ and the elements $\tilde z$
map to zero in $F_z/IF_z$ whence in $N/IN$. Thus $Z = \Spec(R/I)$
is a solution to the problem in this case.
\medskip\noindent
Assume $\mathcal{F}$ is of finite type with quasi-compact scheme
theoretic support. Write $Z = \Spec(R/I)$.
Write $I = \bigcup I_\lambda$ as a filtered union of finitely generated
ideals. Set $Z_\lambda = \Spec(R/I_\lambda)$, so $Z = \colim Z_\lambda$.
Since $u_Z$ is zero, we see that $u_{Z_\lambda}$ is zero
for some $\lambda$ by Lemma \ref{lemma-iso-limits}.
This finishes the proof of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-F-zero-module-map}
Let $A$ be a ring. Let $u : M \to N$ be a map of $A$-modules.
If $N$ is projective as an $A$-module, then there exists an ideal
$I \subset A$ such that for any ring map $\varphi : A \to B$
the following are equivalent
\begin{enumerate}
\item $u \otimes 1 : M \otimes_A B \to N \otimes_A B$ is zero, and
\item $\varphi(I) = 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
As $M$ is projective we can find a projective $A$-module $C$
such that $F = N \oplus C$ is a free $R$-module.
By replacing $u$ by $u \oplus 1 : F = M \oplus C \to N \oplus C$
we see that we may assume $N$ is free. In this case let $I$ be
the ideal of $A$ generated by coefficients of all the elements of
$\text{Im}(u)$ with respect to some (fixed) basis of $N$.
\end{proof}
\noindent
It would be interesting to find a simple direct proof of the following
lemma using the result of Lemma \ref{lemma-F-zero-somewhat-closed}.
A ``classical'' proof of this lemma when $f : X \to B$ is a projective
morphism and $B$ a Noetherian scheme would be: (a) choose a relatively ample
invertible sheaf $\mathcal{O}_X(1)$, (b) set
$u_n : f_*\mathcal{F}(n) \to f_*\mathcal{G}(n)$,
(c) observe that $f_*\mathcal{G}(n)$ is a finite locally free sheaf
for all $n \gg 0$, and (d) $F_{zero}$ is represented by the vanishing
locus of $u_n$ for some $n \gg 0$.
\begin{lemma}
\label{lemma-F-zero-closed}
In Situation \ref{situation-iso}. Assume
\begin{enumerate}
\item $f$ is locally of finite presentation,
\item $\mathcal{G}$ is an $\mathcal{O}_X$-module of finite presentation
flat over $B$,
\item the scheme theoretic support of $\mathcal{G}$ is proper over $B$.
\end{enumerate}
Then the functor $F_{zero}$ is an algebraic space and $F_{zero} \to B$
is a closed immersion. If $\mathcal{F}$ is of finite type, then
$F_{zero} \to B$ is of finite presentation.
\end{lemma}
\begin{proof}
In order to prove that $F_{zero}$ is an algebraic space, it suffices
to show that $F_{zero} \to B$ is representable, see
Spaces, Lemma \ref{spaces-lemma-representable-over-space}.
Let $B' \to B$ be a morphism where $B'$ is a scheme and let
$u' : \mathcal{F}' \to \mathcal{G}'$ be the pullback of $u$ to $X' = X_{B'}$.
Then the associated functor $F'_{zero}$ equals $F_{zero} \times_B B'$.
This reduces us to the case that $B$ is a scheme.
\medskip\noindent
Assume $B$ is a scheme. We will show that $F_{zero}$ is representable
by a closed subscheme of $B$. By Lemma \ref{lemma-iso-sheaf} and
Descent, Lemmas \ref{descent-lemma-closed-immersion} and
\ref{descent-lemma-descent-data-sheaves}
the question is local for the \'etale topology on $B$. Let $b \in B$.
We first replace $B$ by an affine neighbourhood of $b$.
Denote $Z \subset X$ the scheme theoretic support of $\mathcal{G}$.
Denote $Z_b \subset X_b$ the fibre of $Z \subset X \to B$ over $b$.
The space $|Z_b|$ is quasi-compact by the last assumption of the lemma.
Choose an affine scheme $U$ and an \'etale morphism $\varphi : U \to X$
such that $|Z_b| \subset \text{Im}(|U| \to |X|)$. After replacing $B$ by an
affine elementary \'etale neighbourhood of $b$ and replacing $U$
by some affine $U'$ \'etale over $U$ with $U'_b \to U_b$ surjective,
we may assume that $\Gamma(U, \varphi^*\mathcal{G})$ is a projective
$\Gamma(B, \mathcal{O}_B)$-module, see
More on Flatness, Lemma \ref{flat-lemma-finite-presentation-flat-along-fibre}.
Since $Z \to B$ is proper the image of
$$
|Z| \setminus \text{Im}(|U| \to |X|)
$$
in $|B|$ is a closed subset not containing $b$. Hence, after replacing
$B$ by an affine open containing $b$, we may assume that
$|Z| \subset \text{Im}(|U| \to |X|)$. (To be sure, after this replacement
it is still true that $\Gamma(U, \varphi^*\mathcal{G})$ is a projective
$\Gamma(B, \mathcal{O}_B)$-module.) By Lemma \ref{lemma-iso-go-up}
we see that $F_{zero}$ is the same as the corresponding functor
for the map $\varphi^*\mathcal{F} \to \varphi^*\mathcal{G}$.
This case follows immediately from Lemma \ref{lemma-F-zero-module-map}.
\medskip\noindent
We still have to show that $F_{zero} \to B$ is of finite presentation if
$\mathcal{F}$ is of finite type. Let $\mathcal{F}' \subset \mathcal{G}$
be the image of $u$ and denote $F'_{zero}$ the functor corresponding
to $\mathcal{F}' \to \mathcal{G}$. Then $F_{zero} = F'_{zero}$ and
the scheme theoretic support of $\mathcal{F}'$ is a closed subspace of
the scheme theoretic support of $\mathcal{G}$, hence proper over $B$.
Thus Lemma \ref{lemma-iso-limits} implies that $F_{zero} = F'_{zero}$
is limit preserving over $B$. We conclude by Limits of Spaces, Proposition
\ref{spaces-limits-proposition-characterize-locally-finite-presentation}.
\end{proof}
\noindent
The following result is a variant of
More on Flatness, Theorem \ref{flat-theorem-flattening-map}.
\begin{lemma}
\label{lemma-F-iso-closed}
In Situation \ref{situation-iso}. Assume
\begin{enumerate}
\item $f$ is locally of finite presentation,
\item $\mathcal{F}$ is locally of finite presentation and flat over $B$,
\item the scheme theoretic support of $\mathcal{F}$ is proper over $B$, and
\item $u$ is surjective.
\end{enumerate}
Then the functor $F_{iso}$ is an algebraic space and $F_{iso} \to B$
is a closed immersion. If $\mathcal{G}$ is of finite presentation, then
$F_{iso} \to B$ is of finite presentation.
\end{lemma}
\begin{proof}
Let $\mathcal{K} = \text{Ker}(u)$ and apply Lemma \ref{lemma-F-zero-closed}
to $\mathcal{K} \to \mathcal{G}$. Note that $\mathcal{K}$ is of finite type
if $\mathcal{G}$ is of finite presentation, see
Modules on Sites, Lemma
\ref{sites-modules-lemma-kernel-surjection-finite-onto-finite-presentation}.
\end{proof}
\section{The $\mathit{Hom}$-functor}
\label{section-hom}
\noindent
In this section we study the functor of homomorphisms defined below.
\begin{situation}
\label{situation-hom}
Let $S$ be a scheme. Let $f : X \to B$ be a morphism of algebraic spaces
over $S$. Let $\mathcal{F}$, $\mathcal{G}$ be quasi-coherent
$\mathcal{O}_X$-modules. For any scheme $T$ over $B$ we will denote
$\mathcal{F}_T$ and $\mathcal{G}_T$ the base changes of
$\mathcal{F}$ and $\mathcal{G}$ to $T$, in other words, the pullbacks
via the projection morphism $X_T = X \times_B T \to X$.
We consider the functor
\begin{equation}
\label{equation-hom}
\mathit{Hom}(\mathcal{F}, \mathcal{G}) :
(\Sch/B)^{opp}
\longrightarrow
\textit{Sets},\quad
T
\longrightarrow
\Hom_{\mathcal{O}_{X_T}}(\mathcal{F}_T, \mathcal{G}_T)
\end{equation}
\end{situation}
\noindent
In Situation \ref{situation-hom} we sometimes think of the functor
$\mathit{Hom}(\mathcal{F}, \mathcal{G})$ as a functor
$$
\mathit{Hom}(\mathcal{F}, \mathcal{G}) :
(\Sch/S)^{opp}
\longrightarrow
\textit{Sets}
$$
endowed with a morphism
$\mathit{Hom}(\mathcal{F}, \mathcal{G}) \to B$.
Namely, if $T$ is a scheme over $S$, then an element of
$\mathit{Hom}(\mathcal{F}, \mathcal{G})(T)$ consists of a pair
$(h, u)$, where $h$ is a morphism $h : T \to B$ and
$u : \mathcal{F}_T \to \mathcal{G}_T$ is an $\mathcal{O}_{X_T}$-module
map where $X_T = T \times_{h, B} X$ and $\mathcal{F}_T$ and $\mathcal{G}_T$
are the pullbacks to $X_T$. In particular, when we say
that $\mathit{Hom}(\mathcal{F}, \mathcal{G})$ is an algebraic space,
we mean that the corresponding functor
$(\Sch/S)^{opp} \to \textit{Sets}$ is an algebraic space.
\begin{lemma}
\label{lemma-hom-sheaf}
In Situation \ref{situation-hom} the functor
$\mathit{Hom}(\mathcal{F}, \mathcal{G})$
satisfies the sheaf property for the fpqc topology.
\end{lemma}
\begin{proof}
Let $\{T_i \to T\}_{i \in I}$ be an fpqc covering of schemes over $B$.
Set $X_i = X_{T_i} = X \times_S T_i$ and $\mathcal{F}_i = u_{T_i}$
and $\mathcal{G}_i = \mathcal{G}_{T_i}$.
Note that $\{X_i \to X_T\}_{i \in I}$ is an fpqc covering of $X_T$, see
Topologies on Spaces, Lemma \ref{spaces-topologies-lemma-fpqc}.
Thus a family of maps $u_i : \mathcal{F}_i \to \mathcal{G}_i$
such that $u_i$ and $u_j$ restrict to the same map on
$X_{T_i \times_T T_j}$ comes from a unique map
$u : \mathcal{F}_T \to \mathcal{G}_T$ by descent
(Descent on Spaces, Proposition
\ref{spaces-descent-proposition-fpqc-descent-quasi-coherent}).
\end{proof}
\begin{remark}
\label{remark-hom-base-change}
In Situation \ref{situation-hom} let $B' \to B$ be a morphism of
algebraic spaces over $S$. Set $X' = X \times_B B'$ and denote
$\mathcal{F}'$, $\mathcal{G}'$ the pullback of
$\mathcal{F}$, $\mathcal{G}$ to $X'$. Then we obtain a functor
$\mathit{Hom}(\mathcal{F}', \mathcal{G}') : (\Sch/B')^{opp} \to \textit{Sets}$
associated to the base change $f' : X' \to B'$. For a scheme $T$ over $B'$
it is clear that we have
$$
\mathit{Hom}(\mathcal{F}', \mathcal{G}')(T) =
\mathit{Hom}(\mathcal{F}, \mathcal{G})(T)
$$
where on the right hand side we think of $T$ as a scheme over $B$
via the composition $T \to B' \to B$. This trivial remark
will occasionally be useful to change the base algebraic space.
\end{remark}
\begin{lemma}
\label{lemma-hom-sheaf-in-X}
In Situation \ref{situation-hom} let $\{X_i \to X\}_{i \in I}$ be an fppf
covering and for each $i, j \in I$ let $\{X_{ijk} \to X_i \times_X X_j\}$
be an fppf covering. Denote $\mathcal{F}_i$, resp.\ $\mathcal{F}_{ijk}$
the pullback of $\mathcal{F}$ to $X_i$, resp.\ $X_{ijk}$. Similarly
define $\mathcal{G}_i$ and $\mathcal{G}_{ijk}$. For ever scheme
$T$ over $B$ the diagram
$$
\xymatrix{
\mathit{Hom}(\mathcal{F}, \mathcal{G})(T) \ar[r] &
\prod\nolimits_i
\mathit{Hom}(\mathcal{F}_i, \mathcal{G}_i)(T)
\ar@<1ex>[r]^-{\text{pr}_0^*} \ar@<-1ex>[r]_-{\text{pr}_1^*}
&
\prod\nolimits_{i, j, k}
\mathit{Hom}(\mathcal{F}_{ijk}, \mathcal{G}_{ijk})(T)
}
$$
presents the first arrow as the equalizer of the other two.
\end{lemma}
\begin{proof}
Let $u_i : \mathcal{F}_{i, T} \to \mathcal{G}_{i, T}$ be an element in the
equalizer of $\text{pr}_0^*$ and $\text{pr}_1^*$. Since the base change
of an fppf covering is an fppf covering
(Topologies on Spaces, Lemma \ref{spaces-topologies-lemma-fppf})
we see that $\{X_{i, T} \to X_T\}_{i \in I}$ and
$\{X_{ijk, T} \to X_{i, T} \times_{X_T} X_{j, T}\}$ are fppf coverings.
Applying Descent on Spaces, Proposition
\ref{spaces-descent-proposition-fpqc-descent-quasi-coherent}
we first conclude that $u_i$ and $u_j$ restrict to the same morphism
over $X_{i, T} \times_{X_T} X_{j, T}$, whereupon a second application
shows that there is a unique morphism $u : \mathcal{F}_T \to \mathcal{G}_T$
restricting to $u_i$ for each $i$. This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-hom-limits}
In Situation \ref{situation-hom}. If $\mathcal{F}$ is of finite presentation
and $f$ is quasi-compact and quasi-separated, then
$\mathit{Hom}(\mathcal{F}, \mathcal{G})$ is limit preserving.
\end{lemma}
\begin{proof}
Let $T = \lim_{i \in I} T_i$ be a directed limit of affine $B$-schemes.
We have to show that
$$
\mathit{Hom}(\mathcal{F}, \mathcal{G})(T) =
\colim \mathit{Hom}(\mathcal{F}, \mathcal{G})(T_i)
$$
Pick $0 \in I$. We may replace $B$ by $T_0$, $X$ by $X_{T_0}$,
$\mathcal{F}$ by $\mathcal{F}_{T_0}$, $\mathcal{G}$ by
$\mathcal{G}_{T_0}$, and $I$ by $\{i \in I \mid i \geq 0\}$.
See Remark \ref{remark-hom-base-change}.
Thus we may assume $B = \Spec(R)$ is affine.
\medskip\noindent
When $B$ is affine, then $X$ is quasi-compact and quasi-separated.
Choose a surjective \'etale morphism $U \to X$ where $U$ is an
affine scheme (Properties of Spaces, Lemma
\ref{spaces-properties-lemma-quasi-compact-affine-cover}).
Since $X$ is quasi-separated, the scheme $U \times_X U$ is quasi-compact
and we may choose a surjective \'etale morphism $V \to U \times_X U$
where $V$ is an affine scheme. Applying Lemma \ref{lemma-hom-sheaf-in-X}
we see that $\mathit{Hom}(\mathcal{F}, \mathcal{G})$ is the
equalizer of two maps between
$$
\mathit{Hom}(\mathcal{F}|_U, \mathcal{G}|_U)
\quad\text{and}\quad
\mathit{Hom}(\mathcal{F}|_V, \mathcal{G}|_V)
$$
This reduces us to the case that $X$ is affine.
\medskip\noindent
In the affine case the statement of the lemma reduces to
the following problem: Given a ring map $R \to A$, two $A$-modules
$M$, $N$ and a directed system of $R$-algebras $C = \colim C_i$.
When is it true that the map
$$
\colim \Hom_{A \otimes_R C_i}(M \otimes_R C_i, N \otimes_R C_i)
\longrightarrow
\Hom_{A \otimes_R C}(M \otimes_R C, N \otimes_R C)
$$
is bijective? By
Algebra, Lemma \ref{algebra-lemma-module-map-property-in-colimit}
this holds if $M \otimes_R C$ is of finite presentation over
$A \otimes_R C$, i.e., when $M$ is of finite presentation over $A$.
\end{proof}
\begin{lemma}
\label{lemma-hom-closed}
Let $S$ be a scheme. Let $B$ be an algebraic space over $S$.
Let $i : X' \to X$ be a closed immersion of algebraic spaces
over $B$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module
and let $\mathcal{G}'$ be a quasi-coherent $\mathcal{O}_{X'}$-module.
Then
$$
\mathit{Hom}(\mathcal{F}, i_*\mathcal{G}') =
\mathit{Hom}(i^*\mathcal{F}, \mathcal{G}')
$$
as functors on $(\Sch/B)$.
\end{lemma}
\begin{proof}
Let $g : T \to B$ be a morphism where $T$ is a scheme.
Denote $i_T : X'_T \to X_T$ the base change of $i$.
Denote $h : X_T \to X$ and $h' : X'_T \to X'$ the projections.
Observe that $(h')^*i^*\mathcal{F} = i_T^*h^*\mathcal{F}$.
As a closed immersion is affine
(Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-closed-immersion-affine})
we have $h^*i_*\mathcal{G} = i_{T, *}(h')^*\mathcal{G}$ by
Cohomology of Spaces, Lemma \ref{spaces-cohomology-lemma-affine-base-change}.
Thus we have
\begin{align*}
\mathit{Hom}(\mathcal{F}, i_*\mathcal{G}')(T)
& =
\Hom_{\mathcal{O}_{X_T}}(h^*\mathcal{F}, h^*i_*\mathcal{G}') \\
& =
\Hom_{\mathcal{O}_{X_T}}(h^*\mathcal{F}, i_{T, *}(h')^*\mathcal{G}) \\
& =
\Hom_{\mathcal{O}_{X'_T}}(i_T^*h^*\mathcal{F}, (h')^*\mathcal{G}) \\
& =
\Hom_{\mathcal{O}_{X'_T}}((h')^*i^*\mathcal{F}, (h')^*\mathcal{G}) \\
& =
\mathit{Hom}(i^*\mathcal{F}, \mathcal{G}')(T)
\end{align*}
as desired. The middle equality follows from the adjointness of the functors
$i_{T, *}$ and $i_T^*$.
\end{proof}
\begin{lemma}
\label{lemma-cohomology-perfect-complex}
Let $S$ be a scheme. Let $B$ be an algebraic space over $S$.
Let $K$ be a pseudo-coherent object of $D(\mathcal{O}_B)$.
\begin{enumerate}
\item If for all $g : T \to B$ in $(\Sch/B)$ the cohomology sheaf
$H^{-1}(Lg^*K)$ is zero, then the functor
$$
(\Sch/B)^{opp} \longrightarrow \textit{Sets},\quad
(g : T \to B) \longmapsto H^0(T, H^0(Lg^*K))
$$
is an algebraic space affine and of finite presentation over $B$.
\item If for all $g : T \to B$ in $(\Sch/B)$ the cohomology sheaves
$H^i(Lg^*K)$ are zero for $i < 0$, then $K$ is perfect with tor amplitude
in $[0, b]$ for some $b \geq 0$ and the functor
$$
(\Sch/B)^{opp} \longrightarrow \textit{Sets},\quad
(g : T \to B) \longmapsto H^0(T, Lg^*K)
$$
is an algebraic space affine and of finite presentation over $B$.
\end{enumerate}
\end{lemma}
\begin{proof}
Under the assumptions of (2) we have $H^0(T, Lg^*K) = H^0(T, H^0(Lg^*K))$.
Let us prove that the rule $T \mapsto H^0(T, H^0(Lg^*K))$ satisfies the
sheaf property for the fppf topology. To do this assume we have an
fppf covering $\{h_i : T_i \to T\}$ of a scheme $g : T \to B$ over $B$.
Set $g_i = g \circ h_i$. Note that since $h_i$ is flat, we have
$Lh_i^* = h_i^*$ and $h_i^*$ commutes with taking cohomology. Hence
$$
H^0(T_i, H^0(Lg_i^*K)) =
H^0(T_i, H^0(h_i^*Lg^*K)) =
H^0(T, h_i^*H^0(Lg^*K))
$$
Similarly for the pullback to $T_i \times_T T_j$.
Since $Lg^*K$ is a perfect complex on $T$
(Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-pseudo-coherent-pullback})
the cohomology sheaf $\mathcal{F} = H^0(Lg^*K)$ is quasi-coherent
(Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-pseudo-coherent}).
Hence by Descent on Spaces, Proposition
\ref{spaces-descent-proposition-fpqc-descent-quasi-coherent}
we see that
$$
H^0(T, \mathcal{F}) = \text{Ker}(
\prod H^0(T_i, h_i^*\mathcal{F}) \to
\prod H^0(T_i, h_i^*\mathcal{F}))
$$
In this way we see that the rules in (1) and (2) satisfy
the sheaf property for fppf coverings. This mean we may apply
Bootstrap, Lemma \ref{bootstrap-lemma-locally-algebraic-space-finite-type}
it suffices to prove the representability \'etale locally on $B$. Moreover,
we may check whether the end result is affine and of finite presentation
\'etale locally on $B$, see
Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-affine-local} and
\ref{spaces-morphisms-lemma-finite-presentation-local}.
Hence we may assume that $B$ is an affine scheme.
\medskip\noindent
Assume $B = \Spec(A)$ is an affine scheme. By the results of
Derived Categories of Spaces, Lemmas
\ref{spaces-perfect-lemma-pseudo-coherent},
\ref{spaces-perfect-lemma-derived-quasi-coherent-small-etale-site}, and
\ref{spaces-perfect-lemma-descend-pseudo-coherent}
we deduce that in the rest of the proof we may think of $K$ as a perfect
object of the derived category of complexes of modules on $B$
in the Zariski topology. By
Derived Categories of Schemes, Lemmas
\ref{perfect-lemma-pseudo-coherent},
\ref{perfect-lemma-affine-compare-bounded}, and
\ref{perfect-lemma-pseudo-coherent-affine} we can find a pseudo-coherent
complex $M^\bullet$ of $A$-modules such that $K$ is the corresponding
object of $D(\mathcal{O}_B)$. Our assumption on pullbacks implies
that $M^\bullet \otimes^\mathbf{L}_A \kappa(\mathfrak p)$
has vanishing $H^{-1}$ for all primes $\mathfrak p \subset A$.
By More on Algebra, Lemma \ref{more-algebra-lemma-cut-complex-in-two}
we can write
$$
M^\bullet =
\tau_{\geq 0}M^\bullet \oplus \tau_{\leq - 1}M^\bullet
$$
with $\tau_{\geq 0}M^\bullet$ perfect with Tor amplitude in $[0, b]$
for some $b \geq 0$ (here we also have used
More on Algebra, Lemmas \ref{more-algebra-lemma-glue-perfect} and
\ref{more-algebra-lemma-glue-tor-amplitude}).
Note that in case (2) we also see that $\tau_{\leq - 1}M^\bullet = 0$
in $D(A)$ whence $M^\bullet$ and $K$ are perfect with
tor amplitude in $[0, b]$. For any $B$-scheme $g : T \to B$ we have
$$
H^0(T, H^0(Lg^*K)) = H^0(T, H^0(Lg^*\tau_{\geq 0}K))
$$
(by the dual of Derived Categories, Lemma
\ref{derived-lemma-negative-vanishing})
hence we may replace $K$ by $\tau_{\geq 0}K$ and correspondingly
$M^\bullet$ by $\tau_{\geq 0}M^\bullet$. In other words, we may
assume $M^\bullet$ has tor amplitude in $[0, b]$.
\medskip\noindent
Assume $M^\bullet$ has tor amplitude in $[0, b]$.
We may assume $M^\bullet$ is a bounded above complex of finite free
$A$-modules (by our definition of pseudo-coherent complexes, see
More on Algebra, Definition \ref{more-algebra-definition-pseudo-coherent}
and the discussion following the definition).
By More on Algebra, Lemma \ref{more-algebra-lemma-last-one-flat}
we see that $M = \text{Coker}(M^{- 1} \to M^0)$ is flat. By
Algebra, Lemma \ref{algebra-lemma-finite-projective} we see that $M$
is finite locally free. Hence $M^\bullet$ is quasi-isomorphic to
$$
M \to M^1 \to M^2 \to \ldots \to M^d \to 0 \ldots
$$
Note that this is a K-flat complex
(Cohomology, Lemma \ref{cohomology-lemma-bounded-flat-K-flat}),
hence derived pullback of $K$ via a morphism $T \to B$ is computed
by the complex
$$
g^*\widetilde{M} \to g^*\widetilde{M^1} \to \ldots
$$
Thus it suffices to show that the functor
$$
(g : T \to B) \longmapsto
\text{Ker}(
\Gamma(T,g^*\widetilde{M})
\to
\Gamma(T, g^*(\widetilde{M^1})
)
$$
is representable by an affine scheme of finite presentation over $B$.
\medskip\noindent
We may still replace $B$ by the members of an affine open covering
in order to prove this last statement. Hence we may assume that $M$
is finite free (recall that $M^1$ is finite free to begin with).
Write $M = A^{\oplus n}$ and $M^1 = A^{\oplus m}$. Let the map
$M \to M^1$ be given by the $m \times n$ matrix $(a_{ij})$ with
coefficients in $A$. Then $\widetilde{M} = \mathcal{O}_B^{\oplus n}$
and $\widetilde{M^1} = \mathcal{O}_B^{\oplus m}$. Thus the functor
above is equal to the functor
$$
(g : T \to B) \longmapsto
\{(f_1, \ldots, f_n) \in \Gamma(T, \mathcal{O}_T) \mid
\sum g^\sharp(a_{ij}f_i = 0, j = 1, \ldots, m\}
$$
Clearly this is representable by the affine scheme
$$
\Spec\left(A[x_1, \ldots, x_n]/(\sum a_{ij}x_i; j = 1, \ldots, m)\right)
$$
and the lemma has been proved.
\end{proof}
\noindent
The functor $\mathit{Hom}(\mathcal{F}, \mathcal{G})$ is representable in a
number of situations. All of our results will be based on the following
basic case. The proof of this lemma as given below is in some sense the
natural generalization to the proof of \cite[III, Cor 7.7.8]{EGA}.
\begin{lemma}
\label{lemma-noetherian-hom}
In Situation \ref{situation-hom} assume that
\begin{enumerate}
\item $B$ is a Noetherian algebraic space,
\item $f$ is locally of finite type and quasi-separated,
\item $\mathcal{F}$ is a finite type $\mathcal{O}_X$-module, and
\item $\mathcal{G}$ is a finite type $\mathcal{O}_X$-module, flat over $B$,
with scheme theoretic support proper over $B$.
\end{enumerate}
Then the functor $\mathit{Hom}(\mathcal{F}, \mathcal{G})$ is
representable by an algebraic space affine and of finite presentation
over $B$.
\end{lemma}
\begin{proof}
We may replace $X$ by a quasi-compact open neighbourhood of
the support of $\mathcal{G}$, hence we may assume $X$ is Noetherian.
In this case $X$ and $f$ are quasi-compact and quasi-separated.
Choose an approximation $P \to \mathcal{F}$ by a perfect complex $P$ of
the triple $(X, \mathcal{F}, 0)$, see
Derived Categories of Spaces, Definition
\ref{spaces-perfect-definition-approximation-holds} and
Theorem \ref{spaces-perfect-theorem-approximation}).
Then the induced map
$$
\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})
\longrightarrow
\Hom_{D(\mathcal{O}_X)}(P, \mathcal{G})
$$
is an isomorphism because $P \to \mathcal{F}$ induces an isomorphism
$H^0(P) \to \mathcal{F}$ and $H^i(P) = 0$ for $i > 0$.
Moreover, for any morphism $g : T \to B$
denote $h : X_T = T \times_B X \to X$ the projection and set
$P_T = Lh^*P$. Then it is equally true that
$$
\Hom_{\mathcal{O}_{X_T}}(\mathcal{F}_T, \mathcal{G}_T)
\longrightarrow
\Hom_{D(\mathcal{O}_{X_T})}(P_T, \mathcal{G}_T)
$$
is an isomorphism, as $P_T = Lh^*P \to Lh^*\mathcal{F} \to \mathcal{F}_T$
induces an isomorphism $H^0(P_T) \to \mathcal{F}_T$ (because $h^*$ is
right exact and $H^i(P) = 0$ for $i > 0$). Thus it suffices to prove the
result for the functor
$$
T \longmapsto \Hom_{D(\mathcal{O}_{X_T})}(P_T, \mathcal{G}_T).
$$
By the Leray spectral sequence (see Cohomology on Sites, Remark
\ref{sites-cohomology-remark-before-Leray}) we have
$$
\Hom_{D(\mathcal{O}_{X_T})}(P_T, \mathcal{G}_T) =
H^0(X_T, R\SheafHom(P_T, \mathcal{G}_T)) =
H^0(T, Rf_{T, *}R\SheafHom(P_T, \mathcal{G}_T))
$$
where $f_T : X_T \to T$ is the base change of $f$. By
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-base-change-RHom}
we have
$$
Rf_{T, *}R\SheafHom(P_T, \mathcal{G}_T) = Lg^*Rf_*R\SheafHom(P, \mathcal{G}).
$$
By
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-compute-ext-perfect}
the object $K = Rf_*R\SheafHom(P, \mathcal{G})$ of $D(\mathcal{O}_B)$
is perfect. This means we can apply
Lemma \ref{lemma-cohomology-perfect-complex}
as long as we can prove that the cohomology sheaf
$H^i(Lg^*K)$ is $0$ for all $i < 0$ and $g : T \to B$ as above.
This is clear from the last displayed formula as
the cohomology sheaves of
$Rf_{T, *}R\SheafHom(P_T, \mathcal{G}_T)$
are zero in negative degrees
due to the fact that $R\SheafHom(P_T, \mathcal{G}_T)$ has vanishing
cohomology sheaves in negative degrees as $P_T$ is perfect with
vanishing cohomology sheaves in positive degrees.
\end{proof}
\noindent
Here is a cheap consequence of Lemma \ref{lemma-noetherian-hom}.
\begin{proposition}
\label{proposition-hom}
In Situation \ref{situation-hom} assume that
\begin{enumerate}
\item $f$ is of finite presentation, and
\item $\mathcal{G}$ is a finitely presented $\mathcal{O}_X$-module,
flat over $B$, with scheme theoretic support proper over $B$.
\end{enumerate}
Then the functor $\mathit{Hom}(\mathcal{F}, \mathcal{G})$ is
representable by an algebraic space affine over $B$. If $\mathcal{F}$
is of finite presentation, then $\mathit{Hom}(\mathcal{F}, \mathcal{G})$
is of finite presentation over $B$.
\end{proposition}
\begin{proof}
By Lemma \ref{lemma-hom-sheaf} the functor
$\mathit{Hom}(\mathcal{F}, \mathcal{G})$ satisfies
the sheaf property for fppf coverings. This mean we may\footnote{We omit
the verification of the set theoretical condition (3) of the referenced
lemma.} apply
Bootstrap, Lemma \ref{bootstrap-lemma-locally-algebraic-space}
to check the representability \'etale locally on $B$. Moreover,
we may check whether the end result is affine or
of finite presentation \'etale locally on $B$, see
Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-affine-local} and
\ref{spaces-morphisms-lemma-finite-presentation-local}.
Hence we may assume that $B$ is an affine scheme.
\medskip\noindent
Assume $B$ is an affine scheme. As $f$ is of finite presentation, it follows
$X$ is quasi-compact and quasi-separated. Thus we can write
$\mathcal{F} = \colim \mathcal{F}_i$ as a filtered colimit of
$\mathcal{O}_X$-modules of finite presentation
(Limits of Spaces, Lemma \ref{spaces-limits-lemma-colimit-finitely-presented}).
It is clear that
$$
\mathit{Hom}(\mathcal{F}, \mathcal{G}) =
\lim \mathit{Hom}(\mathcal{F}_i, \mathcal{G})
$$
Hence if we can show that each $\mathit{Hom}(\mathcal{F}_i, \mathcal{G})$
is representable by an affine scheme, then we see that the same thing
holds for $\mathit{Hom}(\mathcal{F}, \mathcal{G})$. Use the material in
Limits, Section \ref{limits-section-limits} and
Limits of Spaces, Section \ref{spaces-limits-section-limits}.
Thus we may assume that $\mathcal{F}$ is of finite presentation.
\medskip\noindent
Say $B = \Spec(R)$. Write $R = \colim R_i$ with each $R_i$ a finite
type $\mathbf{Z}$-algebra. Set $B_i = \Spec(R_i)$. By the results of
Limits of Spaces, Lemmas
\ref{spaces-limits-lemma-descend-finite-presentation} and
\ref{spaces-limits-lemma-descend-modules-finite-presentation}
we can find an $i$, a morphism of algebraic spaces $X_i \to B_i$,
and finitely presented $\mathcal{O}_{X_i}$-modules $\mathcal{F}_i$ and
$\mathcal{G}_i$ such that the base change of
$(X_i, \mathcal{F}_i, \mathcal{G}_i)$ to $B$ recovers
$(X, \mathcal{F}, \mathcal{G})$. By
Limits of Spaces, Lemma \ref{spaces-limits-lemma-descend-flat}
we may, after increasing $i$, assume that $\mathcal{G}_i$
is flat over $B_i$. By
Limits of Spaces, Lemma \ref{spaces-limits-lemma-eventually-proper-support}\
we may similarly assume the scheme theoretic support of $\mathcal{G}_i$
is proper over $B_i$. At this point we can apply
Lemma \ref{lemma-noetherian-hom}
to see that $H_i = \mathit{Hom}(\mathcal{F}_i, \mathcal{G}_i)$ is
an algebraic space affine of finite presentation over $B_i$.