forked from svc-develop-team/so-vits-svc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess_hubert_f0.py
154 lines (134 loc) · 5.62 KB
/
preprocess_hubert_f0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import math
import multiprocessing
import os
import argparse
from random import shuffle
import random
import torch
from glob import glob
from tqdm import tqdm
from modules.mel_processing import spectrogram_torch
import json
import utils
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
import diffusion.logger.utils as du
from diffusion.vocoder import Vocoder
import librosa
import numpy as np
hps = utils.get_hparams_from_file("configs/config.json")
dconfig = du.load_config("configs/diffusion.yaml")
sampling_rate = hps.data.sampling_rate
hop_length = hps.data.hop_length
speech_encoder = hps["model"]["speech_encoder"]
def process_one(filename, hmodel,f0p,diff=False,mel_extractor=None):
# print(filename)
wav, sr = librosa.load(filename, sr=sampling_rate)
audio_norm = torch.FloatTensor(wav)
audio_norm = audio_norm.unsqueeze(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
soft_path = filename + ".soft.pt"
if not os.path.exists(soft_path):
wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
wav16k = torch.from_numpy(wav16k).to(device)
c = hmodel.encoder(wav16k)
torch.save(c.cpu(), soft_path)
f0_path = filename + ".f0.npy"
if not os.path.exists(f0_path):
f0_predictor = utils.get_f0_predictor(f0p,sampling_rate=sampling_rate, hop_length=hop_length,device=None,threshold=0.05)
f0,uv = f0_predictor.compute_f0_uv(
wav
)
np.save(f0_path, np.asanyarray((f0,uv),dtype=object))
spec_path = filename.replace(".wav", ".spec.pt")
if not os.path.exists(spec_path):
# Process spectrogram
# The following code can't be replaced by torch.FloatTensor(wav)
# because load_wav_to_torch return a tensor that need to be normalized
if sr != hps.data.sampling_rate:
raise ValueError(
"{} SR doesn't match target {} SR".format(
sr, hps.data.sampling_rate
)
)
#audio_norm = audio / hps.data.max_wav_value
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_path)
if diff:
volume_path = filename + ".vol.npy"
volume_extractor = utils.Volume_Extractor(hop_length)
if not os.path.exists(volume_path):
volume = volume_extractor.extract(audio_norm)
np.save(volume_path, volume.to('cpu').numpy())
mel_path = filename + ".mel.npy"
if not os.path.exists(mel_path) and mel_extractor is not None:
mel_t = mel_extractor.extract(audio_norm.to(device), sampling_rate)
mel = mel_t.squeeze().to('cpu').numpy()
np.save(mel_path, mel)
aug_mel_path = filename + ".aug_mel.npy"
aug_vol_path = filename + ".aug_vol.npy"
max_amp = float(torch.max(torch.abs(audio_norm))) + 1e-5
max_shift = min(1, np.log10(1/max_amp))
log10_vol_shift = random.uniform(-1, max_shift)
keyshift = random.uniform(-5, 5)
if mel_extractor is not None:
aug_mel_t = mel_extractor.extract(audio_norm * (10 ** log10_vol_shift), sampling_rate, keyshift = keyshift)
aug_mel = aug_mel_t.squeeze().to('cpu').numpy()
aug_vol = volume_extractor.extract(audio_norm * (10 ** log10_vol_shift))
if not os.path.exists(aug_mel_path):
np.save(aug_mel_path,np.asanyarray((aug_mel,keyshift),dtype=object))
if not os.path.exists(aug_vol_path):
np.save(aug_vol_path,aug_vol.to('cpu').numpy())
def process_batch(filenames,f0p,diff=False,mel_extractor=None):
print("Loading hubert for content...")
device = "cuda" if torch.cuda.is_available() else "cpu"
hmodel = utils.get_speech_encoder(speech_encoder,device=device)
print("Loaded hubert.")
for filename in tqdm(filenames):
process_one(filename, hmodel,f0p,diff,mel_extractor)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--in_dir", type=str, default="dataset/44k", help="path to input dir"
)
parser.add_argument(
'--use_diff',action='store_true', help='Whether to use the diffusion model'
)
parser.add_argument(
'--f0_predictor', type=str, default="dio", help='Select F0 predictor, can select crepe,pm,dio,harvest, default pm(note: crepe is original F0 using mean filter)'
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args = parser.parse_args()
f0p = args.f0_predictor
print(speech_encoder)
print(f0p)
if args.use_diff:
print("use_diff")
print("Loading Mel Extractor...")
mel_extractor = Vocoder(dconfig.vocoder.type, dconfig.vocoder.ckpt, device = device)
print("Loaded Mel Extractor.")
else:
mel_extractor = None
filenames = glob(f"{args.in_dir}/*/*.wav", recursive=True) # [:10]
shuffle(filenames)
multiprocessing.set_start_method("spawn", force=True)
num_processes = 1
chunk_size = int(math.ceil(len(filenames) / num_processes))
chunks = [
filenames[i : i + chunk_size] for i in range(0, len(filenames), chunk_size)
]
print([len(c) for c in chunks])
processes = [
multiprocessing.Process(target=process_batch, args=(chunk,f0p,args.use_diff,mel_extractor)) for chunk in chunks
]
for p in processes:
p.start()