forked from psteinb/GPU-STREAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
352 lines (296 loc) · 10.1 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include <iostream>
#include <vector>
#include <numeric>
#include <cmath>
#include <limits>
#include <chrono>
#include <algorithm>
#include <iomanip>
#include <cstring>
#define VERSION_STRING "3.1"
#include "Stream.h"
#if defined(CUDA)
#include "CUDAStream.h"
#elif defined(HIP)
#include "HIPStream.h"
#elif defined(OCL)
#include "OCLStream.h"
#elif defined(USE_RAJA)
#include "RAJAStream.hpp"
#elif defined(KOKKOS)
#include "KOKKOSStream.hpp"
#elif defined(ACC)
#include "ACCStream.h"
#elif defined(SYCL)
#include "SYCLStream.h"
#elif defined(OMP)
#include "OMPStream.h"
#endif
// Default size of 2^25
unsigned int ARRAY_SIZE = 33554432;
unsigned int num_times = 100;
unsigned int deviceIndex = 0;
bool use_float = false;
template <typename T>
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c, T& sum);
template <typename T>
void run();
void parseArguments(int argc, char *argv[]);
int main(int argc, char *argv[])
{
std::cout
<< "GPU-STREAM" << std::endl
<< "Version: " << VERSION_STRING << std::endl
<< "Implementation: " << IMPLEMENTATION_STRING << std::endl;
parseArguments(argc, argv);
// TODO: Fix Kokkos to allow multiple template specializations
#ifndef KOKKOS
if (use_float)
run<float>();
else
#endif
run<double>();
}
template <typename T>
void run()
{
std::cout << "Running kernels " << num_times << " times" << std::endl;
if (sizeof(T) == sizeof(float))
std::cout << "Precision: float" << std::endl;
else
std::cout << "Precision: double" << std::endl;
// Create host vectors
std::vector<T> a(ARRAY_SIZE);
std::vector<T> b(ARRAY_SIZE);
std::vector<T> c(ARRAY_SIZE);
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(1) << std::fixed
<< "Array size: " << ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
<< " (=" << ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
std::cout.precision(ss);
// Result of the Dot kernel
T sum;
Stream<T> *stream;
#if defined(CUDA)
// Use the CUDA implementation
stream = new CUDAStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(HIP)
// Use the HIP implementation
stream = new HIPStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(OCL)
// Use the OpenCL implementation
stream = new OCLStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(USE_RAJA)
// Use the RAJA implementation
stream = new RAJAStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(KOKKOS)
// Use the Kokkos implementation
stream = new KOKKOSStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(ACC)
// Use the OpenACC implementation
stream = new ACCStream<T>(ARRAY_SIZE, a.data(), b.data(), c.data(), deviceIndex);
#elif defined(SYCL)
// Use the SYCL implementation
stream = new SYCLStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(OMP)
// Use the OpenMP implementation
stream = new OMPStream<T>(ARRAY_SIZE, a.data(), b.data(), c.data(), deviceIndex);
#endif
stream->init_arrays(startA, startB, startC);
// List of times
std::vector<std::vector<double>> timings(5);
// Declare timers
std::chrono::high_resolution_clock::time_point t1, t2;
// Main loop
for (unsigned int k = 0; k < num_times; k++)
{
// Execute Copy
t1 = std::chrono::high_resolution_clock::now();
stream->copy();
t2 = std::chrono::high_resolution_clock::now();
timings[0].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
// Execute Mul
t1 = std::chrono::high_resolution_clock::now();
stream->mul();
t2 = std::chrono::high_resolution_clock::now();
timings[1].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
// Execute Add
t1 = std::chrono::high_resolution_clock::now();
stream->add();
t2 = std::chrono::high_resolution_clock::now();
timings[2].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
// Execute Triad
t1 = std::chrono::high_resolution_clock::now();
stream->triad();
t2 = std::chrono::high_resolution_clock::now();
timings[3].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
// Execute Dot
t1 = std::chrono::high_resolution_clock::now();
sum = stream->dot();
t2 = std::chrono::high_resolution_clock::now();
timings[4].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
}
// Check solutions
stream->read_arrays(a, b, c);
check_solution<T>(num_times, a, b, c, sum);
// Display timing results
std::cout
<< std::left << std::setw(12) << "Function"
<< std::left << std::setw(12) << "MBytes/sec"
<< std::left << std::setw(12) << "Min (sec)"
<< std::left << std::setw(12) << "Max"
<< std::left << std::setw(12) << "Average" << std::endl;
std::cout << std::fixed;
std::string labels[5] = {"Copy", "Mul", "Add", "Triad", "Dot"};
size_t sizes[5] = {
2 * sizeof(T) * ARRAY_SIZE,
2 * sizeof(T) * ARRAY_SIZE,
3 * sizeof(T) * ARRAY_SIZE,
3 * sizeof(T) * ARRAY_SIZE,
2 * sizeof(T) * ARRAY_SIZE
};
for (int i = 0; i < 5; i++)
{
// Get min/max; ignore the first result
auto minmax = std::minmax_element(timings[i].begin()+1, timings[i].end());
// Calculate average; ignore the first result
double average = std::accumulate(timings[i].begin()+1, timings[i].end(), 0.0) / (double)(num_times - 1);
// Display results
std::cout
<< std::left << std::setw(12) << labels[i]
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-6 * sizes[i] / (*minmax.first)
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.first
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.second
<< std::left << std::setw(12) << std::setprecision(5) << average
<< std::endl;
}
delete stream;
}
template <typename T>
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c, T& sum)
{
// Generate correct solution
T goldA = startA;
T goldB = startB;
T goldC = startC;
T goldSum = 0.0;
const T scalar = startScalar;
for (unsigned int i = 0; i < ntimes; i++)
{
// Do STREAM!
goldC = goldA;
goldB = scalar * goldC;
goldC = goldA + goldB;
goldA = goldB + scalar * goldC;
}
// Do the reduction
goldSum = goldA * goldB * ARRAY_SIZE;
// Calculate the average error
double errA = std::accumulate(a.begin(), a.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldA); });
errA /= a.size();
double errB = std::accumulate(b.begin(), b.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldB); });
errB /= b.size();
double errC = std::accumulate(c.begin(), c.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldC); });
errC /= c.size();
double errSum = fabs(sum - goldSum);
double epsi = std::numeric_limits<T>::epsilon() * 100.0;
if (errA > epsi)
std::cerr
<< "Validation failed on a[]. Average error " << errA
<< std::endl;
if (errB > epsi)
std::cerr
<< "Validation failed on b[]. Average error " << errB
<< std::endl;
if (errC > epsi)
std::cerr
<< "Validation failed on c[]. Average error " << errC
<< std::endl;
// Check sum to 8 decimal places
if (errSum > 1.0E-8)
std::cerr
<< "Validation failed on sum. Error " << errSum
<< std::endl << std::setprecision(15)
<< "Sum was " << sum << " but should be " << goldSum
<< std::endl;
}
int parseUInt(const char *str, unsigned int *output)
{
char *next;
*output = strtoul(str, &next, 10);
return !strlen(next);
}
void parseArguments(int argc, char *argv[])
{
for (int i = 1; i < argc; i++)
{
if (!std::string("--list").compare(argv[i]))
{
listDevices();
exit(EXIT_SUCCESS);
}
else if (!std::string("--device").compare(argv[i]))
{
if (++i >= argc || !parseUInt(argv[i], &deviceIndex))
{
std::cerr << "Invalid device index." << std::endl;
exit(EXIT_FAILURE);
}
}
else if (!std::string("--arraysize").compare(argv[i]) ||
!std::string("-s").compare(argv[i]))
{
if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE))
{
std::cerr << "Invalid array size." << std::endl;
exit(EXIT_FAILURE);
}
}
else if (!std::string("--numtimes").compare(argv[i]) ||
!std::string("-n").compare(argv[i]))
{
if (++i >= argc || !parseUInt(argv[i], &num_times))
{
std::cerr << "Invalid number of times." << std::endl;
exit(EXIT_FAILURE);
}
if (num_times < 2)
{
std::cerr << "Number of times must be 2 or more" << std::endl;
exit(EXIT_FAILURE);
}
}
else if (!std::string("--float").compare(argv[i]))
{
use_float = true;
}
else if (!std::string("--help").compare(argv[i]) ||
!std::string("-h").compare(argv[i]))
{
std::cout << std::endl;
std::cout << "Usage: " << argv[0] << " [OPTIONS]" << std::endl << std::endl;
std::cout << "Options:" << std::endl;
std::cout << " -h --help Print the message" << std::endl;
std::cout << " --list List available devices" << std::endl;
std::cout << " --device INDEX Select device at INDEX" << std::endl;
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
std::cout << " --float Use floats (rather than doubles)" << std::endl;
std::cout << std::endl;
exit(EXIT_SUCCESS);
}
else
{
std::cerr << "Unrecognized argument '" << argv[i] << "' (try '--help')"
<< std::endl;
exit(EXIT_FAILURE);
}
}
}