forked from lcorcodilos/BstarToTW_CMSDAS2020
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bs_test_lpc.py
290 lines (247 loc) · 11.9 KB
/
bs_test_lpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Goal:
# (1) Plot N-1 for tagging variables
# (2) Calculate HEM corrected mt vs mtw distribution
# (3) Save a ttree as a snapshot for isolating signal after successful top tag
from HAMMER.Analyzer import *
from HAMMER.Tools.Common import *
from optparse import OptionParser
import ROOT
import multiprocessing, time, glob
parser = OptionParser()
parser.add_option('-i', '--input', metavar='FILE', type='string', action='store',
default = '',
dest = 'input',
help = 'A root file or text file with multiple root file locations to analyze')
parser.add_option('-y', '--year', metavar='FILE', type='string', action='store',
default = '',
dest = 'year',
help = 'Year')
parser.add_option('-c', '--config', metavar='FILE', type='string', action='store',
default = 'bstar_config.json',
dest = 'config',
help = 'Configuration file in json format with xsecs, cuts, etc that is interpreted as a python dictionary')
parser.add_option('--HEM',metavar='BOOL',action='store_true',
default = False,
dest = 'HEM',
help = 'Use HEM corrected pt for testing')
parser.add_option('--EXCESSISO',metavar='BOOL',action='store_true',
default = False,
dest = 'EXCESSISO',
help = 'Make plots to isolate excess')
(options, args) = parser.parse_args()
start_time = time.time()
cc = CommonCscripts()
CompileCpp(cc.deltaPhi)
CompileCpp(cc.vector)
CompileCpp(cc.invariantMass)
CompileCpp('bstar.cc')
#########
# Setup #
#########
def main(options):
ROOT.ROOT.EnableImplicitMT(4)
a = analyzer(options.input)
setname = options.input.split('/')[-1].replace('.txt','').replace('.root','').replace('_loc','')
print 'Setname: %s'%setname
if options.HEM: hem_str = '_HEM'
else: hem_str = ''
config = openJSON(options.config)
xsec, lumi = 1., 1.
if setname in config['XSECS'].keys() and not a.isData:
xsec = config['XSECS'][setname]
lumi = config['lumi']
if "16" in options.year: year = "16"
elif "17" in options.year: year = "17"
elif "18" in options.year: year = "18"
cuts = config['CUTS'][year]
if not a.isData: norm = (xsec*lumi)/a.genEventCount
else: norm = 1.
flags = ["Flag_goodVertices",
"Flag_globalTightHalo2016Filter",
"Flag_eeBadScFilter",
"Flag_HBHENoiseFilter",
"Flag_HBHENoiseIsoFilter",
"Flag_ecalBadCalibFilter",
"Flag_EcalDeadCellTriggerPrimitiveFilter"]
flags = a.FilterColumnNames(flags)
flag_string = '('
for f in flags: flag_string += f +' && '
flag_string = flag_string[:-4] + ') == 1'
##################################
# Start an initial group of cuts #
##################################
# Trigger
if a.isData:
if year == '16': trigs = ["HLT_PFHT800","HLT_PFHT900","HLT_PFJet450"]
else: trigs = ["HLT_PFHT1050","HLT_PFJet500","HLT_AK8PFJet380_TrimMass30","HLT_AK8PFJet400_TrimMass30"]
trigs = a.FilterColumnNames(trigs)
trig_string = ''
for t in trigs: trig_string += t + ' && '
a.Cut('trigger',trig_string[:-4])
# Filters and nJets
a.Cut("filters",flag_string)
a.Cut("nFatJets_cut","nFatJet > 1")
# HEM re-ordering if needed
if options.HEM:
a.Define('HEMstuff','HEMreweight(FatJet_phi,FatJet_eta,FatJet_pt)') # Returns a vector of the indices of jets after pt reweighting
a.Define('myJet_pt','UnpackHEMpt(HEMstuff)')
a.Define('HEM_index','UnpackHEMidx(HEMstuff)')
a.Define("jetIdx","hemispherize(FatJet_phi, FatJet_jetId, HEM_index)")
else:
a.Define('myJet_pt','FatJet_pt')
a.Define("jetIdx","hemispherize(FatJet_phi, FatJet_jetId)")
a.Cut("hemispherize","(jetIdx[0] != -1)&&(jetIdx[1] != -1)")
a.Cut("pt_cut","myJet_pt[jetIdx[0]] > 400 && myJet_pt[jetIdx[1]] > 400")
a.Cut("eta_cut","abs(FatJet_eta[jetIdx[0]]) < 2.4 && abs(FatJet_eta[jetIdx[1]]) < 2.4")
branches_to_save = [
'nFatJet',
'FatJet_pt',
'myJet_pt',
'FatJet_eta',
'FatJet_phi',
'FatJet_msoftdrop',
'FatJet_tau.',
'FatJet_subJetIdx.',
'nSubJet',
'SubJet_btagDeepB',
'\bjetIdx'
]
#################################
# Build some variables for jets #
#################################
# Wtagging decision logic
# Returns 0 for no tag, 1 for lead tag, 2 for sublead tag, and 3 for both tag (which is physics-wise equivalent to 2)
wtag_str = "1*Wtag(FatJet_tau2[jetIdx[0]]/FatJet_tau1[jetIdx[0]],0,{0}, FatJet_msoftdrop[jetIdx[0]],65,105) + 2*Wtag(FatJet_tau2[jetIdx[1]]/FatJet_tau1[jetIdx[1]],0,{0}, FatJet_msoftdrop[jetIdx[1]],65,105)".format(cuts['tau21'])
jets = VarGroup('jets')
jets.Add('wtag_bit', wtag_str)
jets.Add('top_bit', '(wtag_bit & 2)? 0: (wtag_bit & 1)? 1: -1') # (if wtag==3 or 2 (subleading w), top_index=0) else (if wtag==1, top_index=1) else (-1)
jets.Add('top_index', 'top_bit >= 0 ? jetIdx[top_bit] : -1')
jets.Add('w_index', 'top_index == 0 ? jetIdx[1] : top_index == 1 ? jetIdx[0] : -1')
# Calculate some new comlumns that we'd like to cut on (that were costly to do before the other filtering)
jets.Add("lead_vect", "analyzer::TLvector(myJet_pt[jetIdx[0]],FatJet_eta[jetIdx[0]],FatJet_phi[jetIdx[0]],FatJet_msoftdrop[jetIdx[0]])")
jets.Add("sublead_vect","analyzer::TLvector(myJet_pt[jetIdx[1]],FatJet_eta[jetIdx[1]],FatJet_phi[jetIdx[1]],FatJet_msoftdrop[jetIdx[1]])")
jets.Add("deltaY", "lead_vect.Rapidity()-sublead_vect.Rapidity()")
jets.Add("mtw", "analyzer::invariantMass(lead_vect,sublead_vect)")
noJetTagging = a.Apply([jets])
#########
# N - 1 #
#########
plotting_vars = VarGroup('plotting_vars') # assume leading is top and subleading is W
plotting_vars.Add("mtop", "FatJet_msoftdrop[jetIdx[0]]")
plotting_vars.Add("mW", "FatJet_msoftdrop[jetIdx[1]]")
plotting_vars.Add("tau32", "FatJet_tau3[jetIdx[0]]/FatJet_tau2[jetIdx[0]]")
plotting_vars.Add("subjet_btag", "max(SubJet_btagDeepB[FatJet_subJetIdx1[jetIdx[0]]],SubJet_btagDeepB[FatJet_subJetIdx2[jetIdx[0]]])")
plotting_vars.Add("tau21", "FatJet_tau2[jetIdx[1]]/FatJet_tau1[jetIdx[1]]")
N_cuts = CutGroup('Ncuts') # cuts
N_cuts.Add("deltaY_cut", "abs(deltaY)<1.6")
N_cuts.Add("mtop_cut", "(mtop > 105.)&&(mtop < 220.)")
N_cuts.Add("mW_cut", "(mW > 65.)&&(mW < 105.)")
N_cuts.Add("tau32_cut", "(tau32 > 0.0)&&(tau32 < %s)"%(cuts['tau32']))
N_cuts.Add("subjet_btag_cut", "(subjet_btag > %s)&&(subjet_btag < 1.)"%(cuts['sjbtag']))
N_cuts.Add("tau21_cut", "(tau21 > 0.0)&&(tau21 < %s)"%(cuts['tau21']))
# Organize N-1 of tagging variables when assuming top is always leading
nodeToPlot = a.Apply([plotting_vars])
nminus1Nodes = a.Nminus1(nodeToPlot,N_cuts)
nminus1Hists = HistGroup('nminus1Hists')
binning = {
'mtop': [25,50,300],
'mW': [25,30,270],
'tau32': [20,0,1],
'tau21': [20,0,1],
'subjet_btag': [20,0,1],
'deltaY': [40,-2.0,2.0]
}
# Add hists to group and write out
for nkey in nminus1Nodes.keys():
if nkey == 'full': continue
var = nkey.replace('_cut','').replace('minus_','')
#hist = nminus1Nodes[nkey].DataFrame.Histo1D((var,var,binning[var][0],binning[var][1],binning[var][2]),var)
#nminus1Hists.Add(var,hist)
a.SetActiveNode(noJetTagging)
# # Snapshot while we're here
#branches_to_save.extend(plotting_vars.keys()+jets.keys())
#noJetTagging.Snapshot(branches_to_save,'rootfiles/%s_%s_nojettag%s.root'%(setname,year,hem_str),'snapshot')
########################
# Cut on new variables #
########################
# Select real W and top
tagging_vars = VarGroup('tagging_vars')
tagging_vars.Add("mtop", "top_index > -1 ? FatJet_msoftdrop[top_index] : -10")
tagging_vars.Add("mW", "w_index > -1 ? FatJet_msoftdrop[w_index]: -10")
tagging_vars.Add("tau32", "top_index > -1 ? FatJet_tau3[top_index]/FatJet_tau2[top_index]: -1")
tagging_vars.Add("subjet_btag", "top_index > -1 ? max(SubJet_btagDeepB[FatJet_subJetIdx1[top_index]],SubJet_btagDeepB[FatJet_subJetIdx2[top_index]]) : -1")
tagging_vars.Add("tau21", "w_index > -1 ? FatJet_tau2[w_index]/FatJet_tau1[w_index]: -1")
toptag_str = "TopTag(tau32,0,{0}, subjet_btag,{1},1, mtop,50,1000)==1".format(cuts['tau32'],cuts['sjbtag'])
tagging_vars.Add("wtag",'wtag_bit>0')
tagging_vars.Add("top_tag",toptag_str)
a.Apply([tagging_vars])
branches_to_save.extend(tagging_vars.keys()+jets.keys())
snapshot_node = a.GetActiveNode()
#snapshot_node.Snapshot(branches_to_save,'rootfiles/%s_%s_presel%s.root'%(setname,year,hem_str),'snapshot',lazy=True if options.EXCESSISO else False)
#f_out = ROOT.TFile.Open('rootfiles/%s_%s_presel%s.root'%(setname,year,hem_str),'UPDATE')
#nminus1Hists.Do('Write')
#f_out.Close()
# Write cut on new column
jet_sel = CutGroup('jet_sel')
jet_sel.Add('wtag_cut','wtag')
jet_sel.Add("mtw_cut","mtw>1000.")
jet_sel.Add('deltaY_cut','abs(deltaY)<1.6')
#########
# Apply #
#########
a.Apply([jet_sel])
# Finally discriminate on top tag
final = a.Discriminate("top_tag_cut","top_tag==1")
#CutflowTxt('txtfiles/%s_%s.txt'%(setname,year),final["pass"])
# h = final["pass"].DataFrame.Histo2D(('MtwvMtPass','MtwvMtPass',60, 50, 350, 70, 500, 4000),'mtop','mtw')
# h.Draw('lego')
####################
# Signal isolation #
####################
if options.EXCESSISO:
a.SetActiveNode(final['pass'])
a.Cut('signal_iso','mtop > 160. && mtop < 190. && mtw > 2000 && mtw < 3000')
kin_binning = {
'myJet_pt[top_index]': ROOT.RDF.TH1DModel('pt_top','p_{T}_{top}',32,400,2000),
'myJet_pt[w_index]': ROOT.RDF.TH1DModel('pt_w','p_{T}_{W}',32,400,2000),
'FatJet_eta[top_index]':ROOT.RDF.TH1DModel('eta_top','#eta_{top}',48,-2.4,2.4),
'FatJet_eta[w_index]': ROOT.RDF.TH1DModel('eta_w','#eta_{W}',48,-2.4,2.4),
'FatJet_phi[top_index]':ROOT.RDF.TH1DModel('phi_top','#phi_{top}',50,-3.1415,3.1415),
'FatJet_phi[w_index]': ROOT.RDF.TH1DModel('phi_w','#phi_{W}',50,-3.1415,3.1415),
'mtw': ROOT.RDF.TH1DModel('mtw','m_{tW}',50,2000,3000),
'mtop': ROOT.RDF.TH1DModel('mtop','m_{t}',60,160,190),
'mW': ROOT.RDF.TH1DModel('mW','m_{W}',25,30,270)
}
for k in kin_binning:
if '[' in k:
a.Define(kin_binning[k].fName,k)
node = a.GetActiveNode()
excessHists = HistGroup('excessHists')
for k in kin_binning:
binning = kin_binning[k]
if '[' in k: var = binning.fName
else: var = k
hist = node.DataFrame.Histo1D(binning,var)
excessHists.Add(var,hist)
f_out = ROOT.TFile.Open('rootfiles/%s_%s%s.root'%(setname,year,hem_str),'UPDATE')
excessHists.Do('Write')
f_out.Close()
# a.PrintNodeTree('test',verbose=False)
#########################
# Setup multiprocessing #
#########################
# ex. 4 processes (from multiprocessing) with 4 threads each (EnableImplicitMT) for 16 thread processor
inputs = args
if len(inputs) > 0:
# Will use args as input for multiprocessing instead of options.input (for single process)
print('Using multiprocessing')
pool = multiprocessing.Pool(processes=min(4,len(inputs)))
process_args = []
for i in inputs:
sub_options = copy.deepcopy(options)
sub_options.input = i
process_args.append(sub_options)
pool.map(main,process_args)
else:
main(options)
print "Total time: "+str((time.time()-start_time)/60.) + ' min'