forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fcos_loss.py
263 lines (235 loc) · 10.3 KB
/
fcos_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ppdet.modeling import ops
__all__ = ['FCOSLoss']
def flatten_tensor(inputs, channel_first=False):
"""
Flatten a Tensor
Args:
inputs (Tensor): 4-D Tensor with shape [N, C, H, W] or [N, H, W, C]
channel_first (bool): If true the dimension order of Tensor is
[N, C, H, W], otherwise is [N, H, W, C]
Return:
output_channel_last (Tensor): The flattened Tensor in channel_last style
"""
if channel_first:
input_channel_last = paddle.transpose(inputs, perm=[0, 2, 3, 1])
else:
input_channel_last = inputs
output_channel_last = paddle.flatten(
input_channel_last, start_axis=0, stop_axis=2)
return output_channel_last
@register
class FCOSLoss(nn.Layer):
"""
FCOSLoss
Args:
loss_alpha (float): alpha in focal loss
loss_gamma (float): gamma in focal loss
iou_loss_type (str): location loss type, IoU/GIoU/LINEAR_IoU
reg_weights (float): weight for location loss
quality (str): quality branch, centerness/iou
"""
def __init__(self,
loss_alpha=0.25,
loss_gamma=2.0,
iou_loss_type="giou",
reg_weights=1.0,
quality='centerness'):
super(FCOSLoss, self).__init__()
self.loss_alpha = loss_alpha
self.loss_gamma = loss_gamma
self.iou_loss_type = iou_loss_type
self.reg_weights = reg_weights
self.quality = quality
def __iou_loss(self,
pred,
targets,
positive_mask,
weights=None,
return_iou=False):
"""
Calculate the loss for location prediction
Args:
pred (Tensor): bounding boxes prediction
targets (Tensor): targets for positive samples
positive_mask (Tensor): mask of positive samples
weights (Tensor): weights for each positive samples
Return:
loss (Tensor): location loss
"""
plw = pred[:, 0] * positive_mask
pth = pred[:, 1] * positive_mask
prw = pred[:, 2] * positive_mask
pbh = pred[:, 3] * positive_mask
tlw = targets[:, 0] * positive_mask
tth = targets[:, 1] * positive_mask
trw = targets[:, 2] * positive_mask
tbh = targets[:, 3] * positive_mask
tlw.stop_gradient = True
trw.stop_gradient = True
tth.stop_gradient = True
tbh.stop_gradient = True
ilw = paddle.minimum(plw, tlw)
irw = paddle.minimum(prw, trw)
ith = paddle.minimum(pth, tth)
ibh = paddle.minimum(pbh, tbh)
clw = paddle.maximum(plw, tlw)
crw = paddle.maximum(prw, trw)
cth = paddle.maximum(pth, tth)
cbh = paddle.maximum(pbh, tbh)
area_predict = (plw + prw) * (pth + pbh)
area_target = (tlw + trw) * (tth + tbh)
area_inter = (ilw + irw) * (ith + ibh)
ious = (area_inter + 1.0) / (
area_predict + area_target - area_inter + 1.0)
ious = ious * positive_mask
if return_iou:
return ious
if self.iou_loss_type.lower() == "linear_iou":
loss = 1.0 - ious
elif self.iou_loss_type.lower() == "giou":
area_uniou = area_predict + area_target - area_inter
area_circum = (clw + crw) * (cth + cbh) + 1e-7
giou = ious - (area_circum - area_uniou) / area_circum
loss = 1.0 - giou
elif self.iou_loss_type.lower() == "iou":
loss = 0.0 - paddle.log(ious)
else:
raise KeyError
if weights is not None:
loss = loss * weights
return loss
def forward(self, cls_logits, bboxes_reg, centerness, tag_labels,
tag_bboxes, tag_center):
"""
Calculate the loss for classification, location and centerness
Args:
cls_logits (list): list of Tensor, which is predicted
score for all anchor points with shape [N, M, C]
bboxes_reg (list): list of Tensor, which is predicted
offsets for all anchor points with shape [N, M, 4]
centerness (list): list of Tensor, which is predicted
centerness for all anchor points with shape [N, M, 1]
tag_labels (list): list of Tensor, which is category
targets for each anchor point
tag_bboxes (list): list of Tensor, which is bounding
boxes targets for positive samples
tag_center (list): list of Tensor, which is centerness
targets for positive samples
Return:
loss (dict): loss composed by classification loss, bounding box
"""
cls_logits_flatten_list = []
bboxes_reg_flatten_list = []
centerness_flatten_list = []
tag_labels_flatten_list = []
tag_bboxes_flatten_list = []
tag_center_flatten_list = []
num_lvl = len(cls_logits)
for lvl in range(num_lvl):
cls_logits_flatten_list.append(
flatten_tensor(cls_logits[lvl], True))
bboxes_reg_flatten_list.append(
flatten_tensor(bboxes_reg[lvl], True))
centerness_flatten_list.append(
flatten_tensor(centerness[lvl], True))
tag_labels_flatten_list.append(
flatten_tensor(tag_labels[lvl], False))
tag_bboxes_flatten_list.append(
flatten_tensor(tag_bboxes[lvl], False))
tag_center_flatten_list.append(
flatten_tensor(tag_center[lvl], False))
cls_logits_flatten = paddle.concat(cls_logits_flatten_list, axis=0)
bboxes_reg_flatten = paddle.concat(bboxes_reg_flatten_list, axis=0)
centerness_flatten = paddle.concat(centerness_flatten_list, axis=0)
tag_labels_flatten = paddle.concat(tag_labels_flatten_list, axis=0)
tag_bboxes_flatten = paddle.concat(tag_bboxes_flatten_list, axis=0)
tag_center_flatten = paddle.concat(tag_center_flatten_list, axis=0)
tag_labels_flatten.stop_gradient = True
tag_bboxes_flatten.stop_gradient = True
tag_center_flatten.stop_gradient = True
mask_positive_bool = tag_labels_flatten > 0
mask_positive_bool.stop_gradient = True
mask_positive_float = paddle.cast(mask_positive_bool, dtype="float32")
mask_positive_float.stop_gradient = True
num_positive_fp32 = paddle.sum(mask_positive_float)
num_positive_fp32.stop_gradient = True
num_positive_int32 = paddle.cast(num_positive_fp32, dtype="int32")
num_positive_int32 = num_positive_int32 * 0 + 1
num_positive_int32.stop_gradient = True
normalize_sum = paddle.sum(tag_center_flatten * mask_positive_float)
normalize_sum.stop_gradient = True
# 1. cls_logits: sigmoid_focal_loss
# expand onehot labels
num_classes = cls_logits_flatten.shape[-1]
tag_labels_flatten = paddle.squeeze(tag_labels_flatten, axis=-1)
tag_labels_flatten_bin = F.one_hot(
tag_labels_flatten, num_classes=1 + num_classes)
tag_labels_flatten_bin = tag_labels_flatten_bin[:, 1:]
# sigmoid_focal_loss
cls_loss = F.sigmoid_focal_loss(
cls_logits_flatten, tag_labels_flatten_bin) / num_positive_fp32
if self.quality == 'centerness':
# 2. bboxes_reg: giou_loss
mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1)
tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1)
reg_loss = self.__iou_loss(
bboxes_reg_flatten,
tag_bboxes_flatten,
mask_positive_float,
weights=tag_center_flatten)
reg_loss = reg_loss * mask_positive_float / normalize_sum
# 3. centerness: sigmoid_cross_entropy_with_logits_loss
centerness_flatten = paddle.squeeze(centerness_flatten, axis=-1)
quality_loss = ops.sigmoid_cross_entropy_with_logits(
centerness_flatten, tag_center_flatten)
quality_loss = quality_loss * mask_positive_float / num_positive_fp32
elif self.quality == 'iou':
# 2. bboxes_reg: giou_loss
mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1)
tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1)
reg_loss = self.__iou_loss(
bboxes_reg_flatten,
tag_bboxes_flatten,
mask_positive_float,
weights=None)
reg_loss = reg_loss * mask_positive_float / num_positive_fp32
# num_positive_fp32 is num_foreground
# 3. centerness: sigmoid_cross_entropy_with_logits_loss
centerness_flatten = paddle.squeeze(centerness_flatten, axis=-1)
gt_ious = self.__iou_loss(
bboxes_reg_flatten,
tag_bboxes_flatten,
mask_positive_float,
weights=None,
return_iou=True)
quality_loss = ops.sigmoid_cross_entropy_with_logits(
centerness_flatten, gt_ious)
quality_loss = quality_loss * mask_positive_float / num_positive_fp32
else:
raise Exception(f'Unknown quality type: {self.quality}')
loss_all = {
"loss_cls": paddle.sum(cls_loss),
"loss_box": paddle.sum(reg_loss),
"loss_quality": paddle.sum(quality_loss),
}
return loss_all