-
Notifications
You must be signed in to change notification settings - Fork 1
/
quant.py
328 lines (295 loc) · 14 KB
/
quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import numpy as np
import torch
import torch.nn as nn
import math
def quantize(x, scale, zero, maxq):
if maxq < 0:
return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
return scale * (q - zero)
class Quantizer(nn.Module):
def __init__(self, shape=1):
super(Quantizer, self).__init__()
self.register_buffer('maxq', torch.tensor(0))
self.register_buffer('scale', torch.zeros(shape))
self.register_buffer('zero', torch.zeros(shape))
def configure(
self,
bits, perchannel=False, sym=True,
mse=False, norm=2.4, grid=100, maxshrink=.8,
trits=False
):
self.maxq = torch.tensor(2 ** bits - 1)
self.perchannel = perchannel
self.sym = sym
self.mse = mse
self.norm = norm
self.grid = grid
self.maxshrink = maxshrink
if trits:
self.maxq = torch.tensor(-1)
def find_params(self, x, weight=False):
dev = x.device
self.maxq = self.maxq.to(dev)
shape = x.shape
if self.perchannel:
if weight:
x = x.flatten(1)
else:
if len(shape) == 4:
x = x.permute([1, 0, 2, 3])
x = x.flatten(1)
if len(shape) == 3:
x = x.reshape((-1, shape[-1])).t()
if len(shape) == 2:
x = x.t()
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
if self.maxq < 0:
self.scale = xmax
self.zero = xmin
else:
self.scale = (xmax - xmin) / self.maxq
if self.sym:
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
else:
self.zero = torch.round(-xmin / self.scale)
if self.mse:
best = torch.full([x.shape[0]], float('inf'), device=dev)
for i in range(int(self.maxshrink * self.grid)):
p = 1 - i / self.grid
xmin1 = p * xmin
xmax1 = p * xmax
scale1 = (xmax1 - xmin1) / self.maxq
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq)
q -= x
q.abs_()
q.pow_(self.norm)
err = torch.sum(q, 1)
tmp = err < best
if torch.any(tmp):
best[tmp] = err[tmp]
self.scale[tmp] = scale1[tmp]
self.zero[tmp] = zero1[tmp]
if not self.perchannel:
if weight:
tmp = shape[0]
else:
tmp = shape[1] if len(shape) != 3 else shape[2]
self.scale = self.scale.repeat(tmp)
self.zero = self.zero.repeat(tmp)
if weight:
shape = [-1] + [1] * (len(shape) - 1)
self.scale = self.scale.reshape(shape)
self.zero = self.zero.reshape(shape)
return
if len(shape) == 4:
self.scale = self.scale.reshape((1, -1, 1, 1))
self.zero = self.zero.reshape((1, -1, 1, 1))
if len(shape) == 3:
self.scale = self.scale.reshape((1, 1, -1))
self.zero = self.zero.reshape((1, 1, -1))
if len(shape) == 2:
self.scale = self.scale.unsqueeze(0)
self.zero = self.zero.unsqueeze(0)
def quantize(self, x):
if self.ready():
return quantize(x, self.scale, self.zero, self.maxq)
return x
def enabled(self):
return self.maxq > 0
def ready(self):
return torch.all(self.scale != 0)
try:
import quant_cuda
is_cuda = True
except:
print('CUDA extension not installed.')
is_cuda = False
def make_quant(module, names, bits, groupsize, name=''):
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
delattr(module, attr)
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
for name1, child in module.named_children():
make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
class QuantLinear(nn.Module):
def __init__(self, bits, groupsize, infeatures, outfeatures, bias, kernel_switch_threshold=128, is_cuda=is_cuda):
super().__init__()
if bits not in [2,3,4,8]:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
self.infeatures = infeatures
self.outfeatures = outfeatures
self.bits = bits
self.groupsize = groupsize if groupsize != -1 else infeatures
self.maxq = 2 ** self.bits - 1
self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype = torch.int32))
if bias:
self.register_buffer('bias', torch.zeros((outfeatures),dtype=torch.float16))
else:
self.bias = None
# is performed by unpacking the weights and using torch.matmul
if self.bits in [2,4,8]:
self.register_buffer('wf',torch.tensor(list(range(0,32,self.bits)), dtype=torch.int32).unsqueeze(0),persistent=False)
elif self.bits == 3:
self.register_buffer('wf', torch.tensor([[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0],
[0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31],
[0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0],], dtype=torch.int32).reshape(1,3,12), persistent=False)
self.kernel_switch_threshold = kernel_switch_threshold
self.is_cuda = is_cuda
def pack(self, linear, scales, zeros, g_idx = None):
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(torch.round((linear.weight.data[:,idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:,None])
intweight = torch.cat(intweight,dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [2,4,8]:
for j in range(i, i + (32//self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32//self.bits
row += 1
elif self.bits == 3:
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i))
i += 10
qweight[row] |= intweight[i] << 30
row += 1
qweight[row] |= (intweight[i] >> 2) & 1
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 1)
i += 10
qweight[row] |= intweight[i] << 31
row += 1
qweight[row] |= (intweight[i] >> 1) & 0x3
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 2)
i += 10
row += 1
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1;
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2,4,8]:
for j in range(i, i + (32//self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32//self.bits
col += 1
elif self.bits == 3:
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i))
i += 10
qzeros[:, col] |= zeros[:, i] << 30
col += 1
qzeros[:, col] |= (zeros[:, i] >> 2) & 1
i += 1
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1)
i += 10
qzeros[:, col] |= zeros[:, i] << 31
col += 1
qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3
i += 1
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2)
i += 10
col += 1
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures, )
x = x.reshape(-1,x.shape[-1])
if self.is_cuda is True and (self.kernel_switch_threshold is False or x.shape[0] < self.kernel_switch_threshold):
out = torch.zeros((x.shape[0], self.outfeatures), device=x.device, dtype=torch.float32)
if self.bits == 2:
quant_cuda.vecquant2matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
elif self.bits == 3:
quant_cuda.vecquant3matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
elif self.bits == 4:
quant_cuda.vecquant4matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
elif self.bits == 8:
quant_cuda.vecquant8matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
out = out.half()
else:
if self.bits in [2,4,8]:
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits), self.wf.unsqueeze(0)).to(torch.int16 if self.bits == 8 else torch.int8)
torch.bitwise_and(zeros, (2 ** self.bits) - 1, out=zeros)
zeros = zeros + 1
zeros = zeros.reshape(self.scales.shape)
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1), self.wf.unsqueeze(-1)).to(torch.int16 if self.bits == 8 else torch.int8)
torch.bitwise_and(weight,(2 ** self.bits) - 1, out=weight)
elif self.bits == 3:
zeros = self.qzeros.reshape(self.qzeros.shape[0], self.qzeros.shape[1]//3, 3, 1).expand(-1, -1, -1, 12)
zeros = (zeros >> self.wf.unsqueeze(0))
zeros[:,:,0,10] = (zeros[:,:,0,10]&0x3) | ((zeros[:,:,1,0] << 2)&0x4)
zeros[:,:,1,11] = (zeros[:,:,1,11]&0x1) | ((zeros[:,:,2,0] << 1)&0x6)
zeros = zeros & 0x7
zeros = torch.cat([zeros[:,:,0,:11], zeros[:,:,1,1:12], zeros[:,:,2,1:11]], dim=2)
zeros = zeros + 1
zeros = zeros.reshape(self.scales.shape)
weight = self.qweight.reshape(self.qweight.shape[0]//3, 3, 1, self.qweight.shape[1]).expand(-1, -1, 12, -1)
weight = (weight >> self.wf.unsqueeze(-1))&0x7
weight[:,0,10] = (weight[:,0,10]&0x3) | ((weight[:,1,0] << 2)&0x4)
weight[:,1,11] = (weight[:,1,11]&0x1) | ((weight[:,2,0] << 1)&0x6)
weight = weight & 0x7
weight = torch.cat([weight[:,0,:11], weight[:,1,1:12], weight[:,2,1:11]], dim=1)
weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
num_itr = self.g_idx.shape[0]//x.shape[-1]
if num_itr == 1:
weights = (self.scales[self.g_idx.long()] * (weight - zeros[self.g_idx.long()]))
else:
num_dim = self.g_idx.shape[0]//num_itr
weights = []
for i in range(num_itr):
scale_i = self.scales[:,i*num_dim:(i+1)*num_dim]
weight_i = weight[:,i*num_dim:(i+1)*num_dim]
zeros_i = zeros[:,i*num_dim:(i+1)*num_dim]
g_idx_i = self.g_idx[i*num_dim:(i+1)*num_dim]
weights.append(scale_i[g_idx_i.long()] * (weight_i - zeros_i[g_idx_i.long()]))
weights = torch.cat(weights,dim=1)
out = torch.matmul(x.half(), weights)
out = out.reshape(out_shape)
out = out + self.bias if self.bias is not None else out
return out